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Community-aware Multi-view Representation
Learning with Incomplete Information

Haobin Li, Yijie Lin, Peng Hu, Mouxing Yang, Xi Peng

Abstract—Due to the complexity of data collection in the real world, Multi-view Representation Learning (MvRL) always encounters
the incomplete information challenge referred to as the Sample-missing Problem (SP) and the View-unaligned Problem (VP). Although
several methods have been proposed, they fail to find a good trade-off among sample restoration, view alignment, and data diversity
preservation. To address this issue, we take and mathematically formulate two sociological concepts for MvRL, i.e., community
commonality and community versatility, where the former refers to the identical custom shared within the same community, and the
latter refers to the similar but non-identical custom within communities of the same minority. One could find that the community
commonality can enhance the compactness of view-specific clusters, and the community versatility can preserve the view diversity.
What is more important, both of them together could be helpful to MvRL with the incomplete information. With the formulations, we
propose a novel method dubbed Community-Aware Multi-viEw RepresentAtion learning with incomplete information (CAMERA). In
brief, CAMERA employs a novel dual-stream network and an elaborate objective function that theoretically and empirically embraces
community commonality and versatility. Extensive experimental results on seven datasets demonstrate that CAMERA remarkably
outperforms 24 competitive multi-view learning methods on clustering, classification, and human action recognition tasks. The code is
available at https:/github.com/XLearning-SCU/2025-TPAMI-CAMERA!.

Index Terms—Multi-view Learning, Incomplete Information, Community Commonality, Community Versatility.
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INTRODUCTION

OWARD achieving robustness against SP and VP, a num-

ber of methods have been proposed. To tackle the SP
problem, some methods impute the missing samples with
the help of neighboring counterparts [1] or generative mod-
els [2], [3]. To address the VP challenge, most of the existing
approaches resort to establishing the correspondence be-
tween cross-view samples through instance identification [4]
or graph matching [5]]. Despite the promising performance
achieved by these methods, most of them can only tackle
either SP or VP. To the best of our knowledge, SURE [4]
would be one of the few solutions to handle SP and VP
under a unified framework. In short, SURE assumes that all
samples could be mapped into a common space, wherein
the cross-view neighbors are used to impute missing sam-
ples and establish correspondence for unaligned views. As
SURE utilizes the cross-view sample-sample relationship
in a common space to restore incomplete information, it
is inevitable to overemphasize the cross-view consistency
and lose the data diversity. From the above discussion, one
could conclude that it is quite difficult to find a good trade-
off among sample restoration, view alignment, and data
diversity preservation for the incomplete MvRL methods.
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To better tackle the incomplete information challenge
faced by MvRL while preserving data diversity and avoid-
ing overemphasizing the cross-view consistency, we bring
the community concept from sociology [6] and formally
formulate it into MvRL. As shown in Fig. [1} in sociology,
community [7] refers to a group of people gathering in a
specific region, and multiple region-specific communities
form a minority. Generally speaking, the identical custom [
shared within the same community (dubbed community
commonality) benefits the community cohesion, while the
similar but non-identical custom of communities of the same
minority (dubbed community versatility) helps to establish
the ethnic correspondence and preserve the minority di-
versity. Both the commonality and the versatility are vital
to the continuity and development of the minority. With
the above concepts, we propose a novel incomplete MvRL
method (dubbed CAMERA) which encapsulates the above
two community characteristics into MvRL, where the com-
munity, the minority, and the region correspond to the view-
specific cluster, the view-integration cluster and the view,
respectively. Accordingly, community commonality refers to
a view-specific characteristic desired by sample-level repre-
sentation learning, and community versatility is expected in
learning the cross-view cluster-level representation.

To endow MvVRL with the two community character-
istics, the first thing is to mathematically represent the
community. To this end, the most straightforward approach
is representing the community using its center obtained
by various clustering methods such as k-means [9)]. How-
ever, such an approach is with sub-optimal performance as
proved in our ablation studies, which fails to embrace the
community characteristics due to the following reasons: i) it
is hard to guarantee the community commonality in learn-
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Fig. 1. Our observations. Without loss of generality, we take bi-view
data as a showcase to introduce two important concepts in sociology,
i.e., community commonality and community versatility. To be specific,
community commonality indicates that the people within a community
take the common civilization (e.g., farming for a livelihood), while com-
munity versatility indicates different communities of the same minority
share similar but diverse customs (e.g., wearing hats but with different
feathers). With the two sociological concepts, we reveal that two commu-
nity characteristics could be accordingly derived and a well-established
MvRL method always embraces the characteristics, especially when
encountering the incomplete information challenge (SP and VP). More
specifically, motivated by the common civilization, the within-community
samples should share a common pattern, which imposes coherence
on the within-community samples. On the other hand, motivated by the
community versatility, the communities of the same category should be
highly similar instead of identical. Clearly, it is highly expected to find
the balance between highly similar and measurably diverse patterns
so that the cross-view correspondence could be well established while
preserving the complementary information across views. Through em-
bracing the community characteristics, a new paradigm for MvRL with
incomplete information could be designed as the major contribution of
this paper.

ing sample-level representation since the learned sample-
level representation is decoupled with the cluster-level rep-
resentation. In other words, the cluster-level representation
often depends on the sample-level representation, but not
vice versa; ii) although it is easy to enforce the cross-view
cluster-level representations similar, it keeps unclear how
to make them diverse. In other words, it is daunting to
guarantee the community versatility during learning cross-
view cluster-level representation, so that the view-specific
information could be preserved and integrated to facilitate
the downstream tasks.

To achieve better incomplete MVRL performance, we
design a novel dual-stream network to couple the sample-
and cluster-level representation learning processes. In brief,
our dual-stream network employs a mutual attention (MA)
mechanism to dexterously manipulate the attention be-
tween samples and learnable community centers in a dual
manner. To be specific, given a sample as the query and
community centers as the gallery, our method integrates
the retrieved community center with the sample-level repre-
sentation using the sample-to-cluster attention mechanism,
thus enjoying the community commonality. In a coupled
fashion, the cluster-level representation is learned from the
sample set through the cluster-to-sample attention mecha-
nism. Besides the contribution in the network architecture,
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we elaborately design a new objective function that endows
the cross-view cluster-level representation with community
versatility while further enhancing community commonal-
ity for sample-level representation. In short, the proposed
objective function consists of a community commonality
learning loss, a sample consistency learning loss, and a com-
munity versatility learning loss. In brief, the commonality
learning loss imposes coherence to the view-specific within-
cluster samples, thus enhancing the compactness of clusters.
The sample consistency learning loss aims to enforce the
cross-view samples of the same instance similar, which
favors learning view-integration cluster representation. As
the other term of our objective, the versatility learning loss
is designed to learn the cross-view cluster-level representa-
tion in a non-monotonic manner, which could avoid over-
emphasizing the cross-view consistency and preserve the
view diversity.

Thanks to the community commonality and the com-
munity versatility, our method finds an elegant balance
among sample restoration, view alignment, and data diver-
sity preservation, thus benefiting the incomplete MvRL. In
summary, the contributions and novelties of this work could
be summarized as follows:

e Motivated by two concepts in sociology, we reveal
that community commonality could enhance the com-
pactness of view-specific clusters, and community ver-
satility would preserve the multi-view diversity. The
introduction and employment of the two sociological
concepts show a feasible way and novel insights toward
achieving the robustness against incomplete informa-
tion for MvRL.

o To implement community commonality and commu-
nity versatility, we propose a novel dual-stream net-
work with an elaborate objective function to learn
view-specific sample-level representation and cross-
view cluster-level representation. The theoretical analy-
sis demonstrates that the objective function could cap-
ture both the community commonality and versatility
from an informative perspective.

o To restore the incomplete information by taking ad-
vantage of community characteristics, we propose a
novel data imputation and alignment method under a
unified MA-based framework. Extensive experiments
verify that community commonality and versatility
could boost the performance in incomplete information
restoration.

2 RELATED WORKS

In this section, we briefly review two topics related to this
work, ie., multi-view representation learning and incom-
plete information restoration.

2.1

Multi-view representation learning (MvRL) aims to learn a
common space for multi-view data, wherein the represen-
tations are extracted for handling downstream tasks. Based
on the paradigms to construct the common space, MvRL
methods could be divided into two categories, namely, i)
the regularization-based methods [10]-[12], which learn the

Multi-view Representation Learning
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common space by employing various regularizations, such
as correlation maximization [10], [11], consistent Laplacian
graph [13], norm constraints [14], and consensus cluster ma-
trix/structure [15], [16]; ii) the contrastive methods [3], [17],
which utilize contrastive loss to simultaneously perform
representation learning and achieve cross-view consistency
in the common space.

Different from the existing works, this paper explicitly
uncovers that the community characteristics could benefit
MvRL. On the one hand, community commonality could en-
hance the compactness of view-specific clusters, thus learn-
ing discriminative representations, which is the foundation
of MvRL. On the other hand, community versatility enriches
representation with unique view-specific information, facil-
itating multi-view diversity. By exploring and exploiting the
community characteristics, CAMERA achieves a new SOTA
performance in several multi-view learning tasks, including
clustering, classification, and action recognition.

2.2

Most MvRL methods implicitly or explicitly rely on the as-
sumption of complete information. However, this assump-
tion could be undermined, leading to the SP and VP. Toward
achieving robust MvRL, some methods have been pro-
posed in the past decade which could be grouped into SP-
oriented and VP-oriented methods. The SP-oriented MvRL
methods aim to impute the missing samples by leveraging
the observed samples, which could be divided into two
categories: i) neighborhood-based methods [1], [4], which
leverage cross-view nearest neighbors to impute missing
samples; ii) generative methods, which learn a global map-
ping across views and utilize the mapping to impute the
missing samples with the help of the observed counterpart
samples. In contrast, VP-oriented MvRL methods aim to es-
tablish cross-view correspondence, which could be divided
into the two categories: i) graph matching methods [5],
which employ graph matching algorithms such as the Hun-
garian algorithm to build the cross-view correspondence;
ii) instance identification methods [4], [18], which identify
the cross-view within-category counterparts for the given
samples and reestablish the correspondence between them.
Although these methods achieve a promising performance,
how to address both SP and VP in a unified framework
is still less touched. Recently, SURE [4] formulates the solu-
tions of SP and VP as a category-level identification task and
proposes the first unified framework that simultaneously
achieves robustness on both SP and VP.

The differences between the existing incomplete infor-
mation restoration methods and our method are as follows.
First, most existing methods focus on the sample-sample
restoration paradigm, while CAMERA tackles both SP and
VP through a sample-community framework, which could
take advantage of community commonality and versatility.
Second, to the best of our knowledge, this work could be the
first attention-based framework in the field of incomplete
information restoration. Such a framework successfully ma-
nipulates the attention between samples and communities
that could be employed to impute missing samples and
establish correspondences, showcasing its immense poten-
tial in data restoration. Thirdly, CAMERA could handle full

Incomplete Information Restoration

3

sample-missing or view-unaligned problems without any
paired samples, whereas most works rely on partially paired
samples. More in-depth discussions with the sample-sample
restoration paradigm are presented in Supplementary Ma-
terial 2.

2.3 Learning with Noisy Correspondence

Noisy Correspondence (NC) refers to inherently irrelevant
or relevant samples that are wrongly regarded as associated
(a.k.a, false positive) or unassociated (a.k.a, false negative),
which is first revealed and studied by [19], [20]. Learning
with noisy correspondence aims to mitigate the negative
impacts of false positive and false negative pairs, which has
recently attracted increasing attention in visual instruction
tuning [21]], vision-language pre-training [22], [23], image-
text matching [24], [25], graph matching [26], object re-
identification [27], [28], and so on.

Both the aforementioned noisy correspondence prob-
lem and the view-unaligned problem studied in our work
focus on the imperfect cross-view/modal correspondence
issue. To be more specific, the former refers to incorrect
Correspondences, whereas the latter refers to missing corre-
spondences. Beyond tackling the imperfect correspondence
issue, our work further mitigates the negative impact of
missing samples, leading to the so-called incomplete infor-
mation problem.

3 METHOD

In this section, we introduce Community-Aware Multi-
viEw RepresentAtion learning with incomplete informa-
tion (CAMERA), which improves incomplete information
restoration performance by taking advantage of both com-
munity commonality and community versatility. In Sec-
tion we present a novel dual-stream network for de-
riving the sample- and community-level representation. In
Section we introduce the loss function that could em-
brace community versatility and further enhance commu-
nity commonality. In Section we offer the theoretical
analysis of two community-level losses from the informative
perspective. In Section we elaborate on how CAMERA
tackles both SP and VP under a unified MA-based frame-
work.

3.1

In this section, we propose a dual-stream network, which
endows view-specific sample-level representation with
community commonality and learns community-level rep-
resentation with aggregated sample information. For clar-
ity, we denote the multi-view dataset as {X“}'_, =
{xf,xg,...,m”N}l‘)/zl, where v € [1,V], where V is the
number of views and N is the number of samples.

As discussed in the Introduction, it is essential to guaran-
tee community commonality by coupling the sample-level
representation with the community-level representation. To
this end, we propose modeling the relationship between
samples and communities as the mutual attention A” and
utilizing it to integrate the sample- and community-level
representations with each other. Mathematically,

A? = Softmax ((WgSU)TWé}vCU/\/g) )

Dual-stream network

)
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Fig. 2. The framework of our method. Without loss of generality, we take the bi-view data as a showcase. We use the view-specific dual-stream
encoder to extract representations for each view. Specifically, we explicitly learn a set of community centers and model the relationship between
samples and community centers through a mutual attention mechanism. This mechanism is pivotal as it promotes the learning of both sample-
and community-level representations, capturing the community commonality. To further enhance community commonality and preserve community
versatility, we introduce a dual-level learning loss on the sample- and community-level representations with three joint objectives, i.e., community
versatility learning, sample consistency learning, and community commonality learning.

where SV € R¥¥N is the view-specific representation
of XV projected by the encoder f(*), Cv € RK
{c},c5,...,cY%} is a set of learnable community centers with
the random initialization, K is the category number, W,
W are the projectors for S* and C", respectively.

The mutual attention A" plays a dual role, facilitating the
learning process of sample- and community-level represen-
tation. At the sample level, the corresponding community
center would be integrated into each sample by resorting to
the sample-to-community attention, so that the sample-level
representation Z¥ could be induced. Formally,

V=8 WhCr (AY)T @)
where W'¢, is the projector for encoding C*. Clearly, given
a sample as the query and community centers as the gallery,
the retrieved community center could be regarded as the
corresponding community center to the sample. Accord-
ingly, each sample would be pushed towards its corre-
sponding community center, thereby endowing the within-
community samples with commonality.

Similarly, at the community level, the within-community
samples could be integrated into each community center
through community-to-sample attention. As a result, the
community-level representation U" could be obtained. For-
mally,

V=C" 4+ W'SYAY, (3)
where W5 is the projector for encoding S*. In other words,
given a community center as the query and samples as
the gallery, the retrieved samples could be regarded as the
within-community samples. Therefore, such an operation
inherently integrates within-community samples into the
community center, which helps to formulate the community
representation.

3.2 The Loss Function

Thanks to the dual-stream network, community common-
ality is endowed into the sample-level representation and
the community-level representation is derived. To preserve
the community versatility of the community-level repre-
sentation and further enhance community commonality of
the sample-level representation, we propose the following
objective function,

L= ['dl + )\Ereca (4)
where L is the dual-level learning loss, L. is the re-
construction loss and A is the trade-off parameter. In the
following, we elaborate on each loss term one by one.

Following [29], the reconstruction loss L. is used to
preserve sufficient information from the input data. To be
specific, the loss is designed as follows,

vV N 2
;;\ 9" &) )

)

where g(*) is the view-specific decoder of the v-th view.
The dual-level learning loss consists of the community-
and sample-level losses. Formally,

Edl = Eccl + ﬁcvl + Esch (6)
where the community-level commonality loss L..; imposes
coherence to the view-specific within-community samples,
the community-level versatility loss L., is proposed to pre-
serve the view diversity, and the sample-level consistency
loss L aims to help guarantee the consistency of sample-
level representation across views. In the following, we will
expound upon each of them individually.
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3.2.1

With the help of the dual-stream network, we model the mu-
tual attention A" as an IV x K matrix, where A7} intrinsically
corresponds to the probability of the i-th sample belong-
ing to the j-th community. To further enhance community
commonality of sample-level representation, we propose to
learn more sharpened mutual attention. In other words, we
expect each sample to be confidently assigned to a certain
community. The aim could be achieved by the following

community commonality loss,

V K
Lo =) Y |A%log AY —

v=1j=1

Community-level Commonality Learning

N

« v v

N Z Aij log Aij » (7)
i=1

where AY; = + Zf\;l A}, and « is the balance weight
which is fixed to 0.02 in all the experiments. The right
part guarantees the sharpness of the mutual attention, while
the left part prevents the situation where most samples are
assigned to the same community (i.e., trivial solution). Such
a community commonality loss L., encourages pushing
samples to their corresponding community centers and be-
ing away from other centers, which would improve within-
community compactness and between-community scatter-
ness.

3.2.2 Community-level Versatility Learning

To embrace community versatility, we propose to learn
the cross-view community-level representation in a non-
monotonic manner, which avoids overemphasizing the
cross-view community consistency. Formally, the proposed
community versatility learning loss is defined as follows,

1 14 K
chl - } Z 26;)1’1}23

vitve i
£ = 3 o) —min s a2 ). )+ (7).
J#i

8)
where [-] | = max (-,0), s (-, -) denotes the cosine similarity,
3 is the similarity bound for positives which is fixed as 0.7,
() is the margin, and u;* is the negative community-level
representation for a given u;*. Notably, the margin o(5)
B is designed to prevent the similarity of negatives from
wrongly increasing due to the over-emphasized similarity
bound of positives. For simplicity, we set o(3) = 3% in our
implementation.

We design L., for the following goal. Although the
vanilla contrastive loss [30] could enforce the positive pairs
to be similar, it would simply maximize the similarities
of positive pairs and thus lose view-specific information.
Clearly, such a solution would destroy the view complemen-
tary assumption [2], [31], thus being infeasible for MvRL. In
contrast, L.,; has an incentive to optimize the similarities
of positive pairs to a bound 3, which prevents the positive
pairs from being identical. Besides, maintaining a margin
o () guarantees the discrepancy between positives and neg-
atives. Thanks to the community versatility learning loss,
the community-level representation could embrace both
similar and diverse patterns, in which the similar pattern
helps to establish cross-view community correspondence,

5

and the diverse pattern preserves the unique view-specific
information for multi-view diversity.

3.2.3 Sample-level Consistency Learning

To facilitate the cross-view consistency of sample-level rep-
resentation, we employ a sample-level contrastive loss to
maximize the similarities between cross-view samples of
the same instance, while simultaneously minimizing the
similarities of samples from different instances. Formally,

1 \%4 N )
Lscl = N Z folﬂuv
v1F#£v2 1=1

v U2
es(zi V2, )/T[

[es(zfl,z;l)/'rz +es(z:1,z;2)/ﬁi| ’

©)

pU1,V2
gi

= —log
N
Zj:l

where 77 = 0.5 is the temperature parameter.

3.3 Theoretical Analysis from the Informative Perspec-
tive

In this section, we conduct a theoretical analysis of the
proposed community-level learning losses. In brief, we first
define the community commonality and the community
versatility from the informative perspective. Based on the
definitions, we derive the lower bound of two community
characteristics and propose a general objective function
to embrace both community commonality and community
versatility accordingly. The proposed community-level loss
in Section. [8.2]is an effective implementation of the objective
function.

In the information theory framework, H (-) denotes the
entropy, H (- |-) denotes the conditional entropy, I (-;-)
denotes the mutual information, and I (-;- | -) denotes con-
ditional mutual information. It is worth noting that in real-
world scenarios, the samples Z¥ and community centers
UV are constructed from finite sets, with |Z¥| = N and
|[UY| = K. Accordingly, we treat Z¥ and U" as discrete
random variables throughout the derivations, following the
prior works [3]], [32], [33]. In this case, the entropy H (-)
and conditional entropy H (- | -) are always non-negative.
Besides, we assume that the sample-community relationship
(i.e., mutual attention A") is derived based on the commu-
nity centers U, i.e.,, H(A" | U") = 0. Based on the above
notations and assumptions, we first give the definition of
community commonality.

Definition 1 (Community Commonality). For the v-th view,
community commonality is defined as the mutual information
between within-view samples and the community centers, i.e.,
I(Z°;Uv).

A large community commonality indicates that the sam-
ples are close to their corresponding community centers and
are far from the other community centers.

Theorem 1. The mutual information between mutual attention
A" and samples Z" is the lower bound of community commonal-
ity I (ZV;U"),ie,I(Z°;UV) > 1(Z";AY) =—H (A"|ZV)+
H(AY).

The detailed proofs of Theorem 1 are presented in
Supplementary Material 1.1. Theorem 1 indicates that the
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community commonality could be optimized by minimiz-
ing H (A¥|Z") and maximizing H (A"), which could be
implemented by the community commonality learning loss
proposed in Eq. [/} Specifically, the first term H (AY|ZY)
could be rewritten as,
H(AY|z2°) = —% > AYlog AY;. (10)
i,
As observed, the minimization of H (A"|Z") pushes each
sample to its corresponding community center and away
from the others, ie, CAMERA encourages improving
within-community compactness and between-community
scatterness.
The second term H (A?) is the entropy of mutual atten-
tion, namely,

H(A)=-) A%log AY. (11)

J

The maximization of H (AY) punishes too large or small
communities in each view to prevent trivial solutions.

Definition 2 (Community Versatility). For the cross-view
community centers U"t and U"?, the community versatility is
defined as H (U |UV2) + H (U2|U™).

By the definition, we could preserve community ver-
satility in the following way. For clarity, we elaborate on
community versatility by taking bi-view data as a showcase.

Theorem 2. The joint function of community commonality
I(Z?;U") and mutual information between cross-view com-
munity centers I (U';U?) is the lower bound of community
versatility, formally,

H (U'WU?) + H (U*|UY)

2
>N 1(Z%U°) - 20 (UL U?). (12)
v=1

The detailed proofs of Theorem 2 are presented in
Supplementary Material 1.2. Drawing upon the theoret-
ical insights, we could maximize the community com-
monality  (Z¥;U") and minimize the mutual information
I(U";U") of cross-view community representations to
preserve the community versatility. However, motivated by
the community concept in Fig. [1} the communities of the
same category should be highly similar, which indicates
that I (U"*; U"2) can not be simply minimized. To solve this
problem, we propose to optimize I (U"*;U"2) to a margin,
embracing both consistency and versatility. Accordingly, the
joint objective function that helps to enhance community
commonality and preserve community versatility is as fol-
lows,

v
max »  (—H (A"|Z") + H (A"))
v=1
” (13)
stmin Y [M—I(U";U)],,
v17£V2
where M is the margin. The optimization target in Eq.
could be achieved by community commonality learning loss
based on Theorem [Il

Following, we try to optimize the constraint in Eq.

According to CPC [34] and DCP [3]], the cross-view InfoNCE

‘ Al
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Fig. 3. MA-based Imputation and Alignment. (a) MA-based Imputation.
The missing sample is imputed with the mutual attention inherited from
the observed view and community centers in the missing view. (b) MA-
based Alignment. The correspondence is established by confirming that
the sample and its cross-view counterpart embrace consistent mutual
attention.

loss £ could be regarded as the lower bound of cross-view
mutual information, ie., I (U',U?) > logN — Ly. How-
ever, InfoNCE loss only maximizes the mutual information
while losing the view-specific information. To tackle this, we
propose a novel triplet-form community-level loss L,;. The
community-level triplet loss could preserve the community
versatility and proved to satisfy the constraint in Eq. [13]in
Supplementary Material 1.3.

3.4 MA-based Incomplete Information Restoration

In this section, we formally define the incomplete informa-
tion and present the details of our MA-based framework for
incomplete information restoration

Definition 3 (Incomplete Information). The dataset { X" }le
is with incomplete information when a portion of the dataset, i.e.,
{Q“}X:1 = {q{’, 43,-- -5 4N, is contaminated with SP, VP,
or both of SP and VP, where qufsl the number of instances with
incomplete information. Specifically, {Q"}le is sample-missing
when
v
1<) 0bs(q)) <V, Vie[L,N,]

v=1

(14)

where Obs(-) is an indicator Junction evaluating to 1 for the
observed samples. While {Q"}, _, is view-unaligned when

1% 1%
SN Cor(gr,q*) <V (V—1),Vie[l,N] (15)

V1 vaFvL

where Cor(-,-) is an indicator function evaluating to 1, iff.,
samples belong to the same instance.

To implement the incomplete information restoration,

we design two solutions toward SP and VP based on the
mutual attention mechanism in the inference stage, i.e., MA-
based Imputation (MAI) and MA-based Alignment (MAA),
respectively. For clarity, in the following, we elaborate on
the MAI and MAA operations by taking bi-view data as a
showcase.
MA-based Imputation (MAI). As shown in Fig. 3{(a), with
the observed sample z! in view 1, the missing sample
in view 2 could be imputed with the help of community
centers C? from the missing view and the mutual attention
of x}. Formally,

2 =sl 4 Wec? (A", (16)
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where A} is the mutual attention of z} and 22 is the imputed
sample representation in view 2. Notably, the representation
of z; is also utilized in the imputation for maintaining the
cross-view consistency.

MA-based Alignment (MAA). As shown in Fig. [B[b), given
2} in view 1 and its counterpart sample in view 2, their cor-
respondence is confirmed by resorting to mutual attention.
Specifically, the two samples would be regarded as paired,
i.f.f.

arg max A} = arg max A%,

17)

Otherwise, the two samples are unaligned, and a new cor-
responding sample srf from view 2 would be derived for
x}. The representation of the newly-corresponded sample

x? could be defined as

2= 24 WeC? (42"

(18)
st.s7 € N? (s;), argmax Aj = argmax A7,

where NV? (s}) indicates the nearest cross-view neighbors
of the sample representation s;. In our implementation, we
seek the nearest neighbor in N (s}) as 23 which satisfies
the constraints in Eq.

For cross-view samples of the same instance, the idea
behind the MA-based framework is that their mutual atten-
tions are expected to be consistent across different views.
Thanks to the explicit cross-view community correspon-
dence established by community versatility, mutual atten-
tion (sample-community relationship) could be employed
to implement the MA-based framework. Such a framework
would take advantage of community commonality and ver-
satility, which benefits incomplete information restoration.
Specifically, our framework improves the compactness of
view-specific clusters and preserves multi-view diversity
by incorporating the community center with community-
and view-specific information into the sample, respectively.
Clearly, both advantages are indispensable in MvRL, which
indicates that the MA-based framework helps to improve
the representation after restoration.

4 EXPERIMENTS

In this section, we evaluate the proposed CAMERA on three
different multi-view learning tasks, including clustering,
classification, and human action recognition. The section
is structured as follows. In Section we introduce the
settings of the experiments. In Section we elaborate on
the network architectures and the implementation details
of CAMERA. In Sections we conduct experiments
on various multi-view tasks to verify the effectiveness of
the proposed CAMERA. In Section we investigate the
robustness of CAMERA through a series of parameter anal-
yses, quantitative analyses, ablation studies, and visualiza-
tion analyses.

4.1

We conduct experiments on the seven widely-used datasets,
including Scene-15 [36], Reuters [37], NoisyMNIST [11],
CUB [38], LandUse-21 [39]], UWA [40] and DHA [41]. The
details of these datasets are presented in Supplementary
Material 3.

Experimental Settings

7

Following [4], [18], for the multi-view clustering and
classification tasks, we adopt the below setting. For the
sample-missing setting, we randomly remove one view of
N, instances to generate the data with missing samples,
and the missing rate is defined as ngp = N,/N. For the
view-unaligned setting, we randomly shuffle N, samples of
the unaligned view to remove the correspondences, and the
unaligned rate is defined as nyp = N, /N.

4.2 Network Architectures and Implementation Details

Following [3]], [18], CAMERA employs the architectures of
convolutional auto-encoder for multi-view image datasets
(i.e., NoisyMNIST) and fully-connected auto-encoder for
other datasets. For evaluation, all view-specific representa-
tions ZY are concatenated as the fusion representation fol-
lowing most existing multi-view learning methods [5], [19].
Then, we perform k-means [9] on the fusion representation
to obtain the clustering results, while SVM [42] is employed
to obtain the classification results. As for the human action
recognition task, we employ the classifier upon the fusion
representation and view-specific representation to obtain
the results. For all experiments, we repeat each method with
five different random initializations and report the mean
results for fair comparisons.

The proposed CAMERA is implemented in PyTorch
1.11.0 and the experiments are carried out on an NVIDIA
3090 GPU. We utilize Adam optimizer for all the datasets
and the batch size is set to 256. For the clustering and clas-
sification tasks, the model is trained for 150 epochs with an
initial learning rate of 0.001. In contrast, the model is trained
within 300 epochs with an initial learning rate of 0.0003 for
the human action recognition task. The balance weight « in
Eq. [7] and the bound § in Eq. [§] are fixed to 0.02 and 0.7,
respectively. The balance weight A is fixed to 10 in all the
datasets except for the multi-view image dataset (NoisyM-
NIST) and multi-view RGBD dataset (UWA, DHA), whose
Ais fixed to 1. In practice, in the first 50 epochs, the model is
warmed up with losses except for the community versatility
learning loss since it would falsely pull between-community
samples at the early stage. To establish the correspondence
between cross-view communities, CAMERA first utilizes
mutual attention to obtain the community assignment of
the samples and then performs the Hungarian algorithm on
the paired samples to establish community correspondence
across views. Finally, the model is trained with the overall
loss (Eq. ) during the rest training time.

4.3 Comparisons on Multi-view Clustering

In this section, we carry out experiments on the multi-view
clustering (MvC) task and compare our CAMERA with 16
state-of-the-art multi-view clustering baselines. The baseline
methods could be divided into six kinds: i) the vanilla MvC
methods including DCCA [10], DCCAE [11]], BMVC [16]
and AE2-Nets [12]; ii) the MvC methods against partial SP
(Eq.[@ N, < N) including PMVC [14], EERIMVC [5],
DCP [3], DSIMVC [1]], and Prolmp [35]; iii) the MvC meth-
ods against partial VP (Eq. |15, N; < N) including PVC [5]
and MVCLN [19]; iv) the generalized MvC methods against
both partial SP and partial VP including SURE [4] and
SMILE [18]; v) the MvC methods against full SP (Eq.
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TABLE 1
The multi-view clustering performance comparisons on five widely-used benchmarks. The best and second best results are denoted in bold and
underline, respectively.

Setting Method Scene-15 Reteurs NoisyMNIST LandUse-21 CUB
ACC NMI ARI | ACC NMI ARI | ACC NMI ARI | ACC NMI ARI | ACC NMI ARI
DCCA [10 28.8 284 132 | 458 261 180 | 61.8 60.6 377 | 14.1 20.0 34 442 433 267
DCCAE [11] 29.0 291 129 | 470 28.0 145 | 654 629 383 | 149 20.9 3.7 423 409 255
BMVC [16] 325 309 116 | 321 7.0 29 30.7 192 106 | 18.8 18.7 3.7 298 203 6.4
AE-Nets [12] 224 234 9.6 29.1 7.6 4.8 29.9 238 118 | 19.2 23.0 5.8 35.9 320 159
PMVC [14] 255 254 113 | 293 7.4 44 33.1 255 146 | 20.0 23.6 8.0 57.7 544 383
PVC [5] 27.0 235 106 | 20.7 53 3.8 16.4 6.7 23 21.3 23.1 8.1 39.0 405 209
Missing EERIMVC [15] 31.5 311 148 | 298 12.0 42 55.6 459 368 | 22.1 25.2 9.1 68.7 639 538
MVCLN [19 31.4 29.5 139 39.3 184 143 53.8 50.6 28.5 221 25.2 9.1 45.2 40.8 219
SURE [4] 39.6 416 235 | 472 309 233 | 93.0 854 859 | 231 286 106 | 583 504 374
DCP [3] 39.5 424 23.5 34.6 17.5 29 80.0 75.2 70.7 222 27.0 10.4 53.7 65.5 47.3
DSIMVC [1] 30.6 35.5 17.2 39.9 19.6 17.1 55.8 55.1 43.0 18.6 18.0 5.7 54.4 524 35.2
Prolmp [35] 416 429 253 | 519 355 285 | 949 874 891 | 224 266 99 | 733 664 548
SMILE [18] 415 413 253 | 394 30.0 235 | 968 917 93.0 | 245 283 114 | 695 667 549
Ours 449 44.4 26.9 54.4 35.9 30.3 98.3 95.1 96.3 27.2 31.9 13.4 74.1 68.1 56.3
DCCA [10] 34.3 36.6 188 | 39.7 13.8 144 | 345 298 179 | 205 22.5 7.5 159 33 0.1
DCCAE [11] 336 366 185 | 414 128 144 | 276 195 100 | 182 189 5.6 15.8 2.8 0.2
BMVC [16] 29.5 299 148 | 382 11.6 121 | 285 247 142 | 138 11.8 29 16.0 34 0.2
AE-Nets |12 36.8 36.6 202 | 355 10.6 8.1 383 343 220 | 120 8.7 1.5 14.5 2.6 0.3
PMVC [14] 30.1 278 144 | 246 3.6 1.9 31.9 214  13.0 | 222 25.2 9.4 15.8 3.0 0.0
PVC [5] 37.9 39.1 206 | 421 204 170 | 818 823 820 | 236 30.0 9.9 50.2 563 386
Unaligned | EERIMVC [15] 25.0 213 103 | 399 149 140 | 468 296 239 | 2238 22.3 9.7 15.8 29 0.0
MVCLN [19 385 399 243 | 502 30.7 249 | 911 842 836 | 25.0 279 116 | 582 552 408
SURE [4] 40.3 40.3 23.1 50.0 29.5 24.6 95.2 88.2 89.7 249 28.6 11.8 64.5 62.0 47.9
DCP [3] 28.1 29.4 12.5 36.2 9.9 7.0 32.3 28.0 94 21.2 23.2 8.3 354 30.7 8.1
DSIMVC [1] 244 26.1 11.0 41.5 21.4 18.7 34.6 24.0 16.8 17.3 17.3 4.8 30.4 254 11.8
SMILE [18] 413 411 247 | 409 304 245 | 979 942 954 | 266 288 128 | 711 704 582
Ours 44.8 44.1 27.1 54.6 32.5 27.9 98.2 95.0 96.0 27.9 33.9 14.2 75.7 71.1 60.5
DCCA [10] 36.6 392 21.0 | 480 26.6 127 | 89.6 883 840 | 155 23.2 44 55.6 561 432
DCCAE [11] 346 390 197 | 420 20.3 8.5 78.0 812 682 | 15.6 244 44 55.3 587 451
BMVC [16) 40.5 412 241 | 424 219 151 | 883 770 766 | 253 386 114 | 66.2 61.7 487
AE-Nets |12 372 405 222 | 424 19.8 149 | 421 434 304 | 248 304 104 | 488 467 305
PMVC [14] 30.8 311 15.0 | 325 11.1 7.5 41.1 364 245 | 250 311 122 | 645 70.3  53.1
PVC [5 38.0 39.8 211 | 477 244 177 | 871 928 931 | 252 305 117 | 59.7 653 516
Complete EERIMVC [15] 39.6 390 221 | 332 14.3 39 65.7 576 513 | 249 29.6 122 | 740 731 624
MVCLN [19 40.5 418 248 | 491 30.7 264 | 973 942 953 | 252 282 118 | 59.7 56,5 425
SURE [4] 41.0 432 250 | 49.1 299 236 | 984 954 965 | 25.1 283 109 | 58.0 59.3 452
DCP [3] 41.1 447 248 | 362 189 4.8 89.1 889 855 | 256 317 131 | 63.6 702 539
DSIMVC |1] 317 356 172 | 432 233 190 | 61.0 581 467 | 18.1 18.6 5.6 585 563 399
Prolmp [35] 436 450 268 | 565 39.4 328 | 992 975 982 | 237 279 108 | 807 751 654
SMILE [18] 444 446 274 | 425 329 262 | 93 978 984 | 267 291 131 | 747 755 645
Ours 455 463 282 | 55.0 348 295 | 999 99.6 99.7 | 28.6 354 151 | 814 75.6  66.6

N, = N) including DM2C [43]; vi) the MvC methods
against full VP including GWMAC [44] and MVC-UM [45].
In the experiments, we train all the baseline methods with
their suggested parameters. Moreover, for the vanilla MvC
methods that cannot handle SP or VP, we employ the
following two prepossessing steps for fair comparisons:

o For baselines that can’t handle SP, we impute the miss-
ing samples by using the mean of the observed samples
in the missing view. After that, the baselines are carried
out on the imputed data.

o For baselines that can’t handle VP, we first employ
PCA [46] to project the data into the latent space,
then perform the Hungarian algorithm to establish the
correspondence. After that, the baselines are carried out
on the re-aligned data.

Three widely-used metrics are used to evaluate the per-
formance of the clustering task, namely, Accuracy (ACC),
Normalized Mutual Information (NMI), and Adjusted Rand
Index (ARI). Higher values of these metrics signify superior
clustering performance.

In the settings of partial SP (missing rate ngp = 50%, de-
noted as “Missing”), partial VP (unaligned rate ny p = 50%,
denoted as “Unaligned”), and complete information (both
nsp = 0% and nyp = 0%, denoted as “Complete”), we
compare CAMERA with 13 multi-view clustering baselines
in Tab. |1, where one could see that: i) CAMERA exhibits

a remarkable performance superiority over state-of-the-art
methods across most datasets. For example, on the Scene-15
dataset, CAMERA outperforms the best baseline with a rel-
ative performance improvement of 7.9% (44.9% v.s. 41.6%)
and 8.5% (44.8% v.s. 41.3%) in terms of ACC under “Miss-
ing” and “Unaligned” settings, respectively; ii) CAMERA
achieves advanced performance in the “Complete” setting,
showing the benefits of embracing community commonality
and versatility.

Besides, to verify the robustness of our CAMERA, we
evaluate it in a more challenging setting, namely, “Un-
paired” refers to the data simultaneously contaminated with
both SP and VP. To be more specific, in the setting, we
randomly select IV, instances, and half of these instances
are specified as the “Missing” setting while the others are
specified as the “Unaligned” setting. For extensive evalu-
ations, we vary the rates of Missing/Unaligned/Unpaired
from 0% to 100% with an interval of 10%. For comparisons,
we choose the three MvC methods (GWMAC, MVC-UM,
and DM2C) against either full SP or full VP, along with
the most competitive methods (PVC, MVCLN, DCP, SURE,
ProIMP, SMILE) in Tab. as the baselines. Notably, in
the setting of full SP or full VP, CAMERA regards sam-
ples and their cross-view nearest neighbors as the pair-
wise samples and constructs the cross-view community
correspondence as there are no prior paired samples. From
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TABLE 2
The multi-view classification performance comparisons on five benchmarks. The best and second best results are denoted in bold and underline,
respectively.

Setting Method Scene-15 Reteurs NoisyMNIST | LandUse-21 CUB
ACC Pre | ACC Pre | ACC Pre | ACC Pre | ACC Pre
DCP [3] 449 422 70.7  70.8 87.8 87.6 25.3 27.0 570 694
SURE [4 514 492 80.0 772 94.4 94.4 298 316 542 525
Missing | Prolmp |35 541 510 | 822 816 | 949 9438 312 308 | 775 782
SMILE |[18] 524 501 | 613 583 | 9.6 96.6 | 459 447 | 775 78.0
Ours 66.7  65.6 84.7 84.6 98.4 98.4 51.9 52.8 842 842
PVC |5 503 490 | 795 760 | 804 803 | 411 420 | 755 75.0
MVCEN [19 482 460 | 786 767 | 957 957 | 354 367 | 694 69.0
Unaligned | SURE [4 511 499 | 797 765 | 96.1 96.1 340 353 | 546 502
SMILE [18] 509 499 | 653 62.7 | 97.2 97.2 515 523 | 831 827
Ours 69.1 68.0 840 83.8 97.4 97.4 56.1 56.8 83.7 84.6
PVC [5] 50.7  49.0 81.9 82.0 88.9 88.7 415 427 81.6 827
MVCLN [19 511 517 | 821 817 | 986 987 | 389 417 | 639 657
DCP 3 474 466 | 733 712 | 933 934 | 284 284 | 812 828
Complete | SURE [4] 50.7 513 | 821 823 | 986 986 | 380 408 | 683 619
Prolmp |35] 56.6 546 | 834 832 | 992  99.0 38.6 388 | 825 83.0
SMILE [18] 524 541 | 720 697 | 993 992 | 578 59.0 | 8.1 86.8
Ours 73.7  73.0 86.2  85.8 99.8  100.0 63.0 63.6 88.8 89.4
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Fig. 4. Multi-view clustering performance analysis on the Scene-15 dataset with different Missing/Unaligned/Unpaired rates.

the results in Fig. @ one could have the following obser-
vations: i) our CAMERA significantly outperforms base-
lines under all Missing/Unaligned/Unpaired rates, which
demonstrates the robustness of our MA-based framework
against all incomplete information cases; ii) when the Miss-
ing/Unaligned /Unpaired rate reaches 100%, most baselines
cannot handle this situation. In contrast, the proposed CAM-
ERA still achieves a great performance, which proves the
effectiveness of CAMERA against multi-view data with full
incomplete information.

4.4 Comparisons on Multi-view Classification

In this section, we carry out experiments on the multi-
view classification task, comparing CAMERA with the 6
most competitive baselines in Tab. [1| For a comprehensive
evaluation, we employ two widely-used classification met-
rics: Accuracy and Precision. Higher values of these metrics
signify superior classification performance. Following [3],
[19], the dataset is separated into train and test sets with a
ratio of 8 : 2.

As shown in Tab. 2}, CAMERA outperforms all the base-
lines in the Missing/Unaligned/Complete setting, which
demonstrates the effectiveness of CAMERA on the classi-
fication task.

4.5 Comparisons on Multi-view Human Action Recog-
nition
In this section, we carry out experiments on the multi-

view human action recognition task and compare CAM-
ERA with 9 baselines, including LIBSVM [47], VLAD [48],

TABLE 3
The performance comparisons on the multi-view human action
recognition task under the UWA dataset. In the table, RGB (R), Depth
(D) and R + D denote the RGB view, the depth view and the fusion of
them, respectively. R — D indicates that the view D is generated by
the view R, D — R is defined similarly as R — D. “-” indicates that the
baselines cannot handle the setting.

Method RGBE R—D Depth D—-R R+D
LIBSVM [47] | 694 685 349 343 727
VLAD [48] 715 - - - -
TSN [49] 71.0 - - - -
WDMM [50] - - 46.6 - -
AMGL [51] 69.2 715 39.9 36.0 68.5
MLAN 52| | 672 67.2 333 33.6 66.6
GMVAR [53] - 735 - 50.4 76.3
GVCA [54] - - - - 77.1
DCP [3] 799 79.7 504 50.2 79.0
Ours 80.8 80.3 51.8 50.9 83.4

TSN [49], WDMM [501, AMGL [51], MLAN [52], GM-
VAR [53], GVCA [54] and DCP [3]. Following [3]], we extract
the RGB features and depth features by TSN and WDMM,
respectively. In brief, the RGB view is selected from three
snippets from each video in the DHA and UWA datasets
and extracted by ResNet-101, and the depth view is ex-
tracted by the same scheme following [53]], [54]. Following
the widely-used protocol of the human action recognition
tasks [53]], [54], we additionally add view-specific, view-
integration classifiers upon our CAMERA model and adopt
the cross-entropy loss for training. In the experiment, we use
50% of the instances as the train set and the rest instances as
the test set. All methods including our CAMERA are trained
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Fig. 5. Parameter analysis on the Scene-15 dataset under the multi-view clustering task, w.r.t., the trade-off parameter X, the balance weight « in
community commonality learning loss, the bound 8 in community versatility learning loss.

using both the RGB and Depth views while being evaluated
under the following settings. “RGB”, “Depth”, and “R+D”
means that the methods are evaluated by only using the off-
the-shelf RGB view, depth view, and a combination of them,
respectively. In contrast, under the setting of “R — D”, the
methods first recover the depth view and then are evaluated
based on the off-the-shelf RGB view and the generated view.
Similarly, the methods under the “D — R” setting first
generate the RGB view and then are evaluated by the RGB
and depth views accordingly.

From the results in Tab. one could observe that
CAMERA significantly outperforms all baselines, which
illustrates the effectiveness of CAMERA. The performance
superiority on the setting of “RGB” and “Depth”, “R — D”
and “D — R”, “R + D” could be attributed to the effects of
our commonality learning module, MA-based imputation
module, versatile learning module, respectively.

4.6 Parameter Analysis and Ablation Studies

In this section, we carry out a series of parameter analysis
and ablation studies to investigate the robustness of CAM-
ERA and explore the effect of community versatility and
community commonality. Unless otherwise stated, all the
experiments are conducted on the Scene-15 dataset under
the multi-view clustering task.

4.6.1 Influence of Hyper-parameters

We investigate the influence of the hyper-parameters includ-
ing the trade-off parameter A (Eq.[d), the balance weight «
(Eq. [/) in community commonality learning loss, and the
bound 3 (Eq. [§) in the community versatility learning loss
under the “Missing” and “Unaligned” setting. From the re-
sults in the left panel of Fig.[5} one could observe that a good
choice of A would improve the performance, and the best

TABLE 4
Multi-view clustering performance comparisons on community
commonality with different incomplete information restoration
paradigms on the Scene-15 dataset. * indicates without the
aggregation operation (Eq. [2).

Setting Method Silhouette Score | ACC
DCP 0.56 395

SURE 1.48 39.6

Missing SMILE 1.81 415
CAMERA* 1.34 43.0

CAMERA 2.00 44.9

PVC 0.69 379

SURE 1.37 40.3

Unaligned | SMILE 1.67 413
CAMERA* 1.58 43.1

CAMERA 2.01 44.8

PVC 1.28 38.0

DCP 1.98 41.1

Complete SURE 2.56 41.0
SMILE 2.45 44 .4

CAMERA* 2.02 44.7

CAMERA 2.86 45.5

performance is achieved when A = 10. To investigate the
influence of o, we vary « within the range of 0 to 0.07 with
an interval of 0.01. As shown in the middle panel of Fig.
one could observe that CAMERA is not sensitive to the
choice of a unless a # 0 where the attention has a tendency
to be uniform thus losing the community commonality. To
explore the community versatility, we vary § within the
range of 0.3 to 1.0 with an interval of 0.1. As depicted in
the right panel of Fig. 5} CAMERA performs stably within
the range of [0.5,0.8] and achieves the best performance
when § = 0.7. In other words, the over-small similarity of
positives would degrade the cross-view consistency, while
the over-large similarity of positives would lose the view
complementary, and thus either of them would lead to a
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TABLE 5
Ablation study of four loss terms on the Scene-15 dataset, where ” v ”
denotes the loss is adopted.

setting Leel Lrec Lsci Lt ACC NMI ARI
v 29.0 295 139

v v 30.0 30.1 146

v v 40.1 416 232

Missing v v 20.7 18.7 7.4
v v v 42.6 425 254

v v v 28.6 29.6 142

v v v 424 420 247

v v v v 44.9 444 269

v 22.3 19.7 8.6

v v 26.9 236 113

v v 40.0 415 231

Unaligned v v 18.6 15.4 6.2
v v v 429 427 258

v v v 267 231 109

v v v 40.9 417 237

v v v v 44.8 441 271

sub-optimal performance.

4.6.2

To demonstrate the significance of embracing the commu-
nity commonality in multi-view learning, we quantify the
community commonality with the help of the silhouette
score. In brief, the silhouette score could indicate within-
cluster compactness and between-cluster scatterness. Specif-
ically, we compute the silhouette score on the fusion rep-
resentation after the restoration, and a larger value of the
silhouette score indicates better community commonality.
The results in Tab. [ illustrate that our CAMERA could
enhance the community commonality and thus improve the
performance.

Importance of the Community Commonality

4.6.3 Ablation Studies

To explore the effectiveness of each loss term in CAM-
ERA, we carry out ablation experiments on the four loss
terms. According to the results shown in Tab. |5, one could
observe that each loss term plays an inseparable role in
the optimization. It is worth noting that the community
versatility learning loss L, relies on the well-established
representation and attention brought by the sample consis-
tency learning loss L. In other words, simply employing
Ly on the exhausted representation and attention would
falsely pull between-community samples, thus degrading
the performance.

4.6.4 Effect of the Community Formulation

As discussed in the Introduction, our dual-stream network
would derive a favorable formulation of community, thus
benefiting the community characteristics. To prove the su-
periority of the dual-stream network, we further explore the
following variants of community formulations:

o Learnable: build a set of learnable community centers
and treat them as communities.

o k-means: employ k-means at each epoch to derive cen-
troids and treat them as the proxy of the communities.

o k-meanst: employ k-means at each epoch to derive the
community assignment of samples and then aggregate
the within-community samples to formulate the com-
munity.

11

TABLE 6
Different variants to formulate the community on the Scene-15 dataset.
T indicates the operation that aggregates samples to formulate the

community.
Setting Strategy ACC NMI ARI
k-means 42.8 43.0 25.6
i k-meanst | 43.0 439 258
Missing Learnable | 42.9 425 259
CAMERA | 449 444 269
k-means 42.9 43.2 25.7
. k-meanst | 432 437 260
Unaligned | /' rmable | 430 430 254
CAMERA | 448 441 271

TABLE 7

Ablation study of different data imputation and alignment strategies on
the Scene-15 dataset.

Strate Imputation Alignment

gy ACC NMI ARI | ACC NMI ARI
Sample Only 321 364 188 | 386 415 230
Community Only | 32.6 350 180 | 338 395 202
CAMERA 449 444 269 | 448 441 271

o CAMERA: build a set of learnable community centers
and then utilize the mutual attention to aggregate the
within-community samples as the community.

As shown in Tab. [§} one could have the following
conclusions: i) treating the learnable community centers
as communities would degrade the performance because
such community centers don’t explicitly aggregate the sam-
ple representation and thus might ineffectively represent
the community; ii) although similar aggregation effect to
the dual-stream network would be achieved, employing
k-means to formulate the community would suffer from
the outdated problem and the loss of community evolu-
tion information, which would degrade the performance.
In contrast, the proposed dual-stream network builds a
set of learnable community centers to preserve historical
information and performs soft aggregation at each iteration
for updating the community. Thanks to the dual-stream net-
work, our strategy tackles these problems and thus achieves
better performance.

4.6.5 \Variants of Restoration Strategy

We conduct analytic experiments to investigate the various
imputation and alignment strategies. Specifically,

o Imputation Strategies: “Sample Only” indicates recov-
ering the missing sample using the observed sample,
ie., 22 = 2s}. “Community Only” indicates that recov-
ering the missing sample using the community centers
of the missing view, i.e., 32 = 2W'5,C? (A})T.

o Alignment Strategies: given z} as the anchor sam-
ple, the new corresponding sample x? could be
derived by nearest neighbor search based on the
sample or community representations. Specifically,
in the “Sample Only” setting, j = argmin,|/s} —
s? I, while in the “Community Only” setting, j =
arg min [|W'eCH (A} = W/EC? (A

From the results in Table |7} one could observe that employ-
ing either the sample representation or the community rep-
resentation would lose community versatility or community
commonality, thus remarkably degrading the performance.
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Fig. 6. Mutual Attention visualization on the NoisyMNIST dataset under
Unpaired setting.

In contrast, the proposed CAMERA would take advantage
of both community commonality and community versatility,
thus boosting the performance.

4.6.6 Visualization on Mutual Attention

As discussed in Section 3.4, we employ mutual attention for
data imputation and alignment. To verify the effectiveness
of the attention-based incomplete information restoration
strategy, we conduct the analytic experiments by visualiz-
ing the mutual attention. From the visualization results in
Fig.[6 one could have the following conclusions. On the one
hand, the mutual attention could distinguish samples from
different categories, demonstrating that it indeed captures
the intrinsic semantics of the samples. On the other hand,
the mutual attention is relatively consistent across views,
which supports the proposed attention-based imputation
and alignment paradigm.

5 CONCLUSION

In this paper, we propose a robust MvRL method from a
novel community perspective. Motivated by two concepts in
sociology, we reveal that community commonality and ver-
satility would benefit incomplete information restoration. To
implement the two community characteristics, the proposed
CAMERA employs a dual-stream network and a novel
objective function. Moreover, we propose a novel MA-based
framework to restore incomplete information by taking
advantage of community characteristics. Experiments and
theoretical analysis demonstrate that CAMERA captures the
community commonality and versatility and thus boosts the
performance of MVRL with incomplete information.
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Supplementary Material of Community-aware
Multi-view Representation Learning with
Incomplete Information

Haobin Li, Yijie Lin, Peng Hu, Mouxing Yang, Xi Peng

N this supplementary material, we provide the mathe-

matical derivation to bridge the relationship between the
community versatility learning loss L.,; and the informa-
tion theory. Besides, we present more experimental analysis
for the proposed CAMERA.

1 PROOFS OF THE THEORETICAL ANALYSIS

In this section, we provide detailed proofs of Theorem 1
and Theorem 2 and the effect of L.,; from an informative
perspective.

1.1 Proofs of Theorem 1

Theorem 1. The mutual information between mutual attention
A" and samples Z" is the lower bound of community commonal-
ity I(ZV;U),ie,1(2Z27;UY) > 1(2Y;A%) = —H (A%|Z7)+
H(AY).

Proof. Since  the  conditional —mutual information

I(Z?;U?|A?) > 0, the lower bound of the community
commonality for the v-th view is

I(Z°U%)=1(Z%A%)+1(Z°U%|A%) —1(Z7;A° | U?)

=I1(Z"A")+1(Z";U"|A")

> 1(27 A")

=—H (A"|Z°)+ H (A"), .
where I(ZV; A | U?) = 0 since we assume that H(A5 )|
Uv) =0, H(A" | Z?) denotes the conditional entropy of the

mutual attention given Zv, and H(A") denotes the entropy
of the mutual attention. O

1.2 Proofs of Theorem 2

Theorem 2. The joint function of community commonality
I1(Zv;U") and mutual information between cross-view com-
munity centers I (U';U?) is the lower bound of community
versatility, formally,

H (U'WU?) + H (U*IU")
2
>3 1(Z%U°) - 20 (UL U?). @)

v=1

o The code is available at https://github.com/XLearning-SCU/2025-TPAMI-
CAMERA.

Proof. According to the the property of mutual informa-
tion [1], i.e.,, H (A) = I (A; B) + H (A|B), the community
versatility could be represented as,

HUYU?) + HU?|\UY = HUY) + H(U?) - 21(UY; U?).

®)
Then, the entropy of the community centers is lower bound
by the community commonality, i.e.,

> (2% UY) + H(U|Z"))
5 )
> Z I(Z/U; UU)

where the conditional entropy H(U"|Z") > 0 holds. Ac-
cording to Eq. 3-4, we derive that the lower bound of
community versatility, formally,

2
HUNUS+H(U?UY) > Y 1(Z°;U")-20(UY U?), (5)

v=1

where I (U';U?) is the mutual information of cross-view
community centers. 0

1.3 Effect of L.,; from the Informative Perspective

In this section, we theoretically prove that the community
versatility learning loss L,; helps to optimize the mutual
information across views (i.e., [ (Ulg Uz)) to a margin.

Following DRC [2], we first derive that the cross-view
mutual information could be optimized through modeling
the conditional probability p (u; | u?) and marginal proba-
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bility p (u}),
I (UYU?)

) p(uiu)

=E(ut,u2) log |:p (’Uzll) p (UZQ)

B [ p(u)

_ E(ul,uz) log p(uzl | uf)

_ ]E(ul,uz) log D gzj,g,ljlq)jg)]Eu; Z 2) )
i i i p u]
- 2 1

p) 1 p(s])
| ) N 2 (0]
(- ’ .
p(ul)

:E(ul u?) lOg

)
LS, p(u3lu})
Nueg —U3€UR, ~p(u?)
©
2 . . . .
where U, is the set of negative community representations

and N,,.q is the number of negative community representa-
tions. Following CPC [3], we assume that the o(ptimal value
p(u})

p(uhu?)’

of the function f (u}, u?) is proportional to

p (U? | ul)
EGE

As any positive real function f can be used here, we use
the popular cosine function in the contrastive loss [4], i.e.,

f (u}, uf) = exp (5 (u}, uf)) We could further derive the
mutual information in Eq. 6 to the form of triplet loss,
I (U U0?)
[ p(uilui)
p(u}
ZE(U1,u2) log ( ) 1
1 Z p(“j |%)
Nneg U?GUﬁeg p(uf)
[ p(ullu?)
ul
~E wl w2 IOg p(2 1)1
(ot 98 | oot

@)

:E(ul Ju?) log

=E(y1,u2) log

=E (1 ,42) (s (u}, uf) — s (u}

where u7 is the negative community representation of u;
and the second equation holds as we utilize only one
negative pair, i.e., Npeg = 1. Accordingly, we define,

Dila2 =—5 (ull,uf) + s (u%,u?) . 8)
Clearly, minimizing Z7K DZ-1 2 s equal to maximizing the
mutual information I (U; U?).

2

Drawn the upon theoretical results, we further employ a
margin M to I (U';U?) in Eq. 7 and prove that the triplet
loss could be a solution to optimize I (U*'; U?) to a margin,

(M — I(Ul;UQ)]+
1 1
M—i—EZDi
v +
<1 S M + DY?
,?XZ:[ + D, }+

| K
:EZ [M = s (uj, uf) + s (uj,uf)]

where M is the margin. According to Eq. 9, the triplet
loss is the upper bound of the target [M — I (U';U?)] .
In other words, minimizing the community-level triplet
loss helps to implement the constraint in Eq. 9, ie,
min [M — I (U';U?)], . In our implementation, we impose
a regularization to the positive pairs, which optimizes the
similarity of the positives to a specific bound /3 thus prevent-
ing learning identical cross-view communities. Besides, the
margin is set to o(3). Formally, for a given community rep-
resentation u} and the corresponding negative community

representation uZ, we propose the following loss function,

l = [a(ﬁ) — min (s (u},uf) ,,3) + s (ull,uf)h_ .

~
~

©)

(10)

2 MORE IN-DEPTH DISCUSSIONS WITH THE SAM-
PLE—SAMPLE RESTORATION PARADIGM.

In this section, we provide detailed discussions about the
differences between the existing sample-sample restoration
paradigm and the proposed sample-community restora-
tion paradigm. Specifically, as mentioned in Introduction,
community commonality and community versatility are
indispensable in multi-view representation learning with in-
complete information. However, the existing sample-sample
restoration paradigm struggles to capture both of them. In
the following, we will elaborate on the limitations of the ex-
isting sample-sample imputation and alignment paradigms.

The sample-sample imputation paradigm aims to im-
pute the missing samples by leveraging the observed
samples. According to the differences in the imputation
strategies, the existing methods could be further divided
into neighborhood-based methods [14], [15] and generative
methods [13], [12]. Specifically, neighborhood-based recov-
ery aims to leverage cross-view neighbors to impute missing
samples. Such a paradigm implicitly assumes that the views
could be mapped into a common space wherein the neigh-
bors of the missing sample could be accurately identified
by its cross-view counterpart. In practice, however, such an
assumption is always satisfied at the cost of the community
versatility, as the view-specific information is often excluded
to learn the common space. To compensate for community
versatility, some studies propose capturing the view-specific
information using a cross-view predictor [13] or genera-
tor [12]. Unfortunately, such a generative paradigm essen-
tially learns an equivalent mapping for the whole dataset
across views, which will lose the community commonality.

As for the sample-sample alignment paradigm, it aims
to establish cross-view correspondence by leveraging the
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TABLE 1
The architecture of the encoders and decoders in CAMERA. In the table, dim(?) denotes the dimension of input data in the v-th view, k denotes
the kernel size, s denotes the stride, p denotes the padding operation and op denotes the output padding operation.

Dataset Encoder Decoder
SIEESE;S Linear(dim(?), 1024), BatchNorm, ReLU L@near(256, 256), BatchNorm, ReLU
LandUse-21 Linear(1024, 1024), BatchNorm, ReLU L}near(256, 512), BatchNorm, ReLU
CUB Linear(1024, 512), BatchNorm, ReL.U Linear(512, 1024), BatchNorm, ReL.U
DHA Linear(512, 256), ReLU Linear(1024, 1024), BatchNorm, ReLU
UWA Linear(256, 256) Linear(1024, dim(*))
Resize(28, 28) Linear(256, 256), ReLU
Conv2d(1, 16, k=(3, 3), s=(1, 1), p=(1, 1)), ReLU Linear(256, 784), ReLU
Conv2d(16, 32, k=(3, 3), s=(2, 2), p=(1, 1)), ReLU | Resize(28, 28)
NoisvyMNIST Conv2d(32, 32, k=(3, 3), s=(1, 1), p=(1, 1)), ReLU | ConvTranspose2d(16, 32, k=(3, 3), s=(2, 2), p=(1, 1), op=(1, 1))
Y Conv2d(32, 16, k=(3, 3), s=(2, 2), p=(1, 1)), ReLU | ConvTranspose2d(32 32, k=(3, 3), s=(2, 2), p=(1, 1))
Flatten ConvTranspose2d(32, 16, k=(3, 3), s=(2, 2), p=(1, 1), op=(1, 1))
Linear(784, 256), ReLU ConvTranspose2d(16, 1, k=(3, 3), s=(2, 2), p=(1, 1))
Linear(256, 256) Flatten

TABLE 2
The multi-view human action recognition performance on the DHA
dataset. The best and second best results are denoted in bold and
underline.

Method RGB R—>D Depth DR R+D
LIBSVM [5]  66.1 702 789 782 835
VLAD [6] 67.1 - - - -
TSN [7] 67.9 - - - -
WDMM [8] - - 81.1 - -
AMGL [9] 64.6 59.1 72.8 67.3 74.9
MLAN [10] 679 67.9 73.0 72.8 76.1
GMVAR [11] - 69.7 - 83.5 88.7
GVCA [12] - - - - 89.3
DCP [13] 784 79.5 79.3 81.0 89.3
Ours 79.7 79.8 79.8 79.8 89.9

relationship between cross-view samples, which could be
divided into the following two categories: i) graph matching
methods [16], which employ graph matching algorithms
such as the Hungarian algorithm to build the cross-view cor-
respondence; ii) instance identification methods [17], which
identify the cross-view within-category counterparts for the
given samples and re-establish the correspondence between
them. However, both graph matching and instance identi-
fication methods assume that the views could be mapped
into a common space, so that cross-view graph structures
and within-category counterparts could be determined. As
discussed above, such an assumption is always satisfied at
the cost of the community versatility, which is indispensable
in MvRL.

Different from the aforementioned methods, the pro-
posed sample-community restoration framework could si-
multaneously embrace both community commonality and
community versatility. On the one hand, with the sample-
to-community relationship, CAMERA integrates the corre-
sponding community center into the sample, thus enhanc-
ing community commonality. On the other hand, with the
community-to-sample relationship, CAMERA aggregates
within-community samples to represent the community
and then learns view-specific communities, thus preserving
community versatility. Thanks to the proposed sample-
community restoration framework, the incomplete infor-
mation could be recovered. Specifically, CAMERA employs
the sample-community relationship of the observed samples

and community centers of the missing view to impute the
missing samples, while establishing the correspondences by
identifying the sample-community relationships of cross-
view samples.

3 MuLTI-VIEW DATASETS

In this section, we present the details of the datasets used in
the manuscript as follows.

Scene-15 [18]: Scene-15 comprises a collection of
4,485 images captured from 15 indoor and out-
door scenes/categories. Following [17], we lever-
age the 20-dimensional GIST features and the 59-
dimensional PHOG features as two distinct views.
Reuters [19]: Reuters is a multilingual news dataset
consisting of 18,758 instances across six languages.
Following [16], we project the two selected lan-
guages, namely, English and French, into a 10-
dimensional latent space through PCA [20].
NoisyMNIST [21]: NoisyMNIST is a large-scale
multi-view dataset that is composed of 70,000 in-
stances distributed across 10 categories. We select a
subset of 30,000 instances for evaluation since some
of the baselines cannot handle the original scale of
the dataset.

CUB [22]: CUB consists of 11,788 images and their
corresponding captions, representing 200 subcate-
gories of birds. Following [23], we extract deep vi-
sual features through the GoogLeNet, while texture
features are obtained using the doc2vec approach. In
our experiment, we focus on the first 10 categories
derived from these two views.

LandUse-21 [24]: LandUse-21 contains 2,100 satel-
lite images of 21 categories, and we utilize the 59-
dimensional PHOG features and the 40-dimensional
LBP features as the two views.

UWA [25]: The dataset consists of 660 action se-
quences instances of 30 categories. The two views
are the 6144-dimensional RGB features and the 110-
dimensional depth features.

DHA [26]: The dataset contains 483 video clips of 23
categories with the 6144-dimensional RGB features
and the 110-dimensional depth features.
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Fig. 1. Multi-view clustering performance on the Scene-15 dataset with different Missing/Unaligned/Unpaired rates in terms of NMI and ARI.
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Fig. 2. t-SNE visualization on the NoisyMNIST dataset across the training process. In the figure, SS denotes the silhouette score.

4 NETWORK ARCHITECTURES oOF CAMERA

The proposed CAMERA employs auto-encoders architec-
ture whose details are presented in Tab. 1. Specifically, fol-
lowing [27], [13], we employ the convolutional auto-encoder
for the multi-view image dataset (NoisyMNIST) and adopt
the full-connected auto-encoder for the other datasets.

5 MORE DETAILED EXPERIMENTS

In this section, we provide more experiment results to
further verify the effectiveness of the proposed CAMERA.

5.1 Additional Experiment Results on Human Recogni-
tion Task

To prove the effectiveness of CAMERA in the human action
recognition task, we have compared CAEMRA with the
state-of-the-art methods on the UWA dataset in Section
4.5 of the manuscript. To further verify the generality of
CAMERA, we additional carry out experiments on the DHA
dataset with the same setting as the manuscript. From the
results in Tab. 2, one could see that CAMERA significantly
improves the performance of most settings.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Existing

MMEIIHENEIEI
IWMEHIIIIHIIE
Ground

Anchor
mmﬂﬂlﬂﬂlllﬂﬂ
reaiencd. (Y[ K (S R Y O S

5 2 7 1 9 5 7 9 3 1
Unaligned

Fig. 3. Data restoration on the NoisyMNIST dataset. We show the data
restoration results of “Missing” setting and “Unaligned” setting in the
Row 1-3 and Row 4-7, respectively. For the “Missing” setting, the rows
represent the existing view, the missing view, and the imputed view. For
the “Unaligned” setting, the rows correspond to the anchor view, the
view with ground truth correspondence, the aligned samples, and the
unaligned view.

5.2 More Analytical Experiments

In the manuscript, we have verified the robustness of
CAMERA on various Missing/Unaligned/Unpaired rates
(Section 4.3). Here, we provide the experiments on the
other two evaluation metrics, i.e., NMI and ARI. As shown
in Fig. 1, CAMERA outperforms all the baselines under
all settings, which illustrates the robustness of CAMERA
against incomplete information.

5.3 t-SNE Visualization

We conduct t-SNE visualization on the fusion representation
at distinct training epochs. From the result in Fig. 2, one
could observe that: i) at the 0 epoch, the imputed and
aligned representations are collapsed, since the community
centers are randomly initialized and the mutual attention
is incorrect. In the “Missing” setting, data forms three
clusters at initialization, which corresponds to a group of
complete data and two groups of imputed data (missing in
different views). In the “Unaligned” setting, the data forms
one cluster, which corresponds to the group of unpaired
data; ii) as the epoch increases, thanks to the community
commonality induced by our CAMERA, the imputed and
aligned data forms more compact clusters, thus boosting
clustering performance.

5.4 Visualization on Data Restoration

To further verify the restoration ability of CAMERA, we
perform visualization analysis in the raw data space by
decoding the imputed and aligned representation. In the
experiments, we impute the missing samples based on the
observed view and establish the correspondence based on
the anchor view. From the results in Fig. 3, CAMERA
successfully imputes the missing samples and establishes
the correspondence. It is worth noting that the imputed and
aligned samples share the same category information as the
observed samples, which illustrates the effectiveness of the
MA-based restoration framework.
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Fig. 4. The parameter analysis of the margin.

5.5

In the proposed community versatility learning loss, we
implement the margin as o(3) = 2 to prevent the simi-
larity of negatives from wrongly increasing as j increases.
To prove the effectiveness of the proposed strategy, we set
the margin to 0.3 and 0.7 and then conduct the training
process. As shown in Fig. 4, simply setting the margin to a
fixed parameter would significantly increase the similarity
of negatives as the bound f3 increases.

Influence of the Margin in L.,
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