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Abstract

Cross-modal retrieval is a fundamental application of multi-
modal learning that has achieved remarkable success with
large-scale well-paired data. However, in practice, it is costly
to collect large-scale well-paired data. To alleviate the de-
pendence on the amount of paired data, in this paper, we
study a practical learning paradigm: semi-paired cross-modal
learning (SPL), which utilizes both a small amount of paired
data and a large amount of unpaired data to enhance cross-
modal learning directly and is more accessible in practice.
To achieve this, we take image-text retrieval as an example
and propose a novel Robust Cross-modal Semi-paired Learn-
ing method (RCSL) by addressing two challenges. To be spe-
cific, i) to overcome the under-optimization issue caused by
too little paired data, we present Semi-paired Discriminative
Learning (SDL) to fully learn visual-semantic associations
from a small amount of image-text pairs by preserving the
alignment and uniformity of modality representations. ii) To
mine visual-semantic correspondences from unpaired data,
RCSL first constructs pseudo-paired correlations across dif-
ferent modalities by nearest neighbor association. However,
this may introduce noisy correspondences (NCs) due to inac-
curate pseudo signals, which could degrade the model’s per-
formance. To tackle NCs, we devise Robust Cross-correlation
Mining (RCM) based on the risk minimization criterion to ro-
bustly and explicitly learn visual-semantic associations from
pseudo-paired data, thus boosting cross-modal learning. Fi-
nally, we conduct extensive experiments on four datasets,
i.e., three widely used benchmark datasets of Flickr30K, MS-
COCO, CC152K, and a newly constructed real-world dataset
Drone-SP, to demonstrate the effectiveness of RCSL under
semi-paired and noisy settings.

Code — https://github.com/QinYang79/RCSL

Introduction
As one of the most fundamental tasks in multimodal com-
munity (Li and Pun 2023; Hu et al. 2023; Qin, Feng, and
Zhang 2025; Qin et al. 2025; Hu et al. 2025; Feng et al.
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Figure 1: Examples of different cross-modal learning
paradigms. Each shape represents an instance, each color
denotes a modality (e.g., image or text), the green solid line
indicates paired correspondence, the red cross indicates un-
paired correspondence, and the blue question mark means
that the correspondence is unknown/noisy. (a) fully-paired
cross-modal learning (FPL), where all pairs are perfectly
matched; (b) unpaired cross-modal learning (UPL), where
all data are unpaired; (c) noisy correspondence learning
(NCL), where alignment information of all data is noisy and
unknown; (d) our studied paradigm, i.e., semi-paired cross-
modal learning (SPL), where the number of matched pairs is
much smaller than that of unmatched ones, i.e., Np ≪ Nu.

2025b,a; Yang et al. 2025; Zou et al. 2025), cross-modal
retrieval (Fartash et al. 2018; Pu et al. 2025; Lee et al.
2018; Chen et al. 2021; Qin et al. 2022) has made signif-
icant progress by bridging heterogeneous modalities (e.g.,
vision and language) for a comprehensive understanding in
the real world. For example, the primary challenge of image-
text retrieval is to overcome the heterogeneity gap across im-
age and text modalities, and accurately learn visual-semantic
similarity to measure the matching degree.

To tackle the challenge, numerous methods (Li et al.
2019; Diao et al. 2021; Zhang et al. 2022) have been pro-
posed and achieved remarkable performance. These meth-
ods could be roughly classified into two groups accord-
ing to the alignment types, i.e., global-level methods and
local-level methods. The first group typically learns holis-
tic visual and textual representations by Deep Neural Net-



works (DNNs) in a latent common space for global-level
matching. The second one attempts to achieve fine-grained
semantic alignments between image regions and word to-
kens for local-level matching. Although these prior meth-
ods for image-text retrieval have demonstrated promising
results, almost all of them require the image-text training
data to be fully paired for fully-paired cross-modal learning
(FPL, see Figure 1). In other words, FPL requires all train-
ing pairs to be carefully semantically aligned between vi-
sion and language. However, collecting such a well-aligned
dataset is usually cost-prohibitive or even infeasible in some
real-world scenarios due to the labor-intensive manual filter-
ing and post-processing (Sharma et al. 2018; Jia et al. 2021).

In contrast to well-paired data, unpaired data or noisy
pairs are more readily available and less expensive to ob-
tain without careful manual processing. Unlike FPL, un-
paired cross-modal learning (UPL) (Li et al. 2021; Zhou
et al. 2022; Huang et al. 2022) aims to build associations
between vision and language without aligned image-text
data. However, most of them rely on pre-trained models
to bridge the visual-semantic gap. A more realistic setting
is concerned with the presence of mismatched pairs in the
image-text pairs, especially those collected from real-world
scenarios (e.g., the Internet), i.e., Noisy Correspondences
(NCs) (Huang et al. 2021). To address this problem, some
recent studies (Huang et al. 2021; Qin et al. 2022, 2023;
Zha et al. 2024; Yang et al. 2024; Zha et al. 2025a,b) lever-
age the memorization effect of DNNs (Arpit et al. 2017) to
identify or recast noisy correspondences of image-text pairs,
thus mitigating the adverse effects of NCs. However, most
methods lack explicit and robust cross-correlation mining
for these unpaired/noisy data, thereby limiting the improve-
ment of retrieval performance. Motivated by this, we explore
the semi-paired cross-modal learning (SPL) for image-text
retrieval. Different from existing learning paradigms as il-
lustrated in Figure 1, the proposed paradigm not only fo-
cuses on learning visual-semantic associations from limited
paired data but also explores ways to gain performance im-
provement from a large amount of unpaired data. Although
the most relevant to the paradigm is semi-supervised cross-
modal retrieval, most existing works (Wang, Gong, and Yan
2024; Shen et al. 2024) mainly focus on category-based
cross-modal retrieval or cross-modal hashing rather than
instance-level image-text retrieval, and cannot be directly
used to align unpaired instance data.

To achieve SPL, we propose a novel Robust Cross-modal
Semi-paired Learning method (RCSL) for image-text re-
trieval as shown in Figure 2. RCSL aims to learn visual-
semantic associations from limited paired data and mine
cross-correlations from a large amount of unpaired data to
enrich semantic information. Specifically, RCSL consists
of Semi-paired Discriminative Learning (SDL) and Robust
Cross-correlation Mining (RCM) to address two urgent is-
sues for robust SPL, respectively. First, SDL endows intra-
modal contrastive learning with the properties of alignment
and uniformity to make representations stable and diverse,
thus overcoming the under-optimization issue caused by in-
sufficient paired data. Second, we build pseudo-paired cor-
relations across different modalities by nearest neighbor as-

sociation and treat the pseudo-paired data as paired data to
learn from unpaired data. However, these pseudo-paired data
inevitably introduce image-text pairs with noisy correspon-
dences (NCs) (Huang et al. 2021) due to the lack of careful
post-processing, which would mislead the model. To address
such a noise problem, we proposes Robust Cross-correlation
Mining (RCM) based on the risk minimization criterion
to prevent the model from overfitting noisy pseudo-paired
pairs, thus enhancing the robustness against NCs. This can
help RCSL robustly and explicitly learn cross-modal associ-
ations from pseudo-paired data, thus mining reliable visual-
semantic information from unpaired data for performance
improvement. Our contributions are summarized as:
• We explore semi-paired cross-modal learning for cross-

modal retrieval. Unlike traditional paradigms, this
paradigm leverages both paired and unpaired cross-
modal data to reduce the dependence on large-scale
paired data.

• A novel Robust Cross-modal Semi-paired Learning
method (RCSL) is proposed to achieve robust image-
text retrieval by tackling two tricky problems, i.e., under-
optimization and noisy correspondence. Our RCSL re-
veals that image-text retrieval can benefit not only from
paired inter-modal contrastive learning but also from
cross-correlation mining.

• Extensive experiments are conducted on three widely-
used benchmarks, namely Flickr30K, MS-COCO, and
CC152K, as well as a newly constructed semi-paired
dataset termed Drone-SP, to verify the robustness of our
RCSL under the semi-paired and noisy setting.

Methodology
Problem Formulation
Let D = Dp ∪ Du = {(Ii, Ti, yi)}Ni=1 be a semi-
paired image-text training dataset, where (Ii, Ti) indicates
an image-text pair, Dp = {(Ii, Ti, 1)}

Np

i=1 is the paired
image-text set, and Du = {(Ii, Ti, 0)}Nu

i=1 is the unpaired
set, yi ∈ {0, 1} is the pairing label to indicate whether the
pair is matched and N = Np + Nu (Np ≪ Nu). As illus-
trated in Figure 1, the training dataset used for semi-paired
cross-modal learning (SPL) is different from that of existing
paradigms. For example, fully-paired cross-modal learning
(FPL) (Lee et al. 2018; Chen et al. 2021) is suitable for the
case where all labels are known, unpaired cross-modal learn-
ing (UPL) (Huang et al. 2022) is suitable for the case where
all labels are unknown, while noisy correspondence learn-
ing (NCL) is suitable for the case where labels are noisy.
Among them, current FPL techniques (Lee et al. 2018; Chen
et al. 2021) heavily rely on the assumption that the training
pairs are correctly matched. However, a large number of un-
paired image-text pairs, which are often easier and cheaper
to obtain than well-paired data, are ignored. Besides, UCL
methods typically rely on pre-trained models for alignment
modeling, which limits the application scenarios, especially
lightweight or sparsity applications.

For NCL, existing methods almost recommend discarding
noisy pairs or reducing the negative impact of noisy ones,



Figure 2: The overview of our RCSL includes Semi-paired Discriminative Learning (SDL, Lsdl) and Robust Cross-correlation
Mining (RCM, Lrcm). SDL aims to project different modalities into a latent common space by keeping good properties of
contrastive learning, thus capturing rich cross-modal associations. RCM mines the visual-semantic correlations from unpaired
data to robustly learn the potential paired information, thereby facilitating cross-modal learning.

thus not fully and explicitly utilizing the semantic informa-
tion of valuable unpaired data (e.g., confident ones). In this
paper, we explore SPL, where the training set D includes
both paired and unpaired data.

To achieve SPL, we propose a Robust Cross-modal Semi-
paired Learning method (RCSL) to learn the visual-semantic
associations from paired and unpaired data, which could be
trained in a batch-by-batch manner. For a mini-batch B =
{IB , TB ,YB} = {(Ii, Ti, yi)}Ki=1 randomly sampled from
D, the joint overall loss is

Loverall(B) = Lsdl(B) + Lrcm(B) (1)

where Lsdl is the loss for semi-paired discriminative learn-
ing to fully learn accurate visual-semantic associations from
the semi-paired data and Lrcm is the robust cross-correlation
mining loss to learn the potential cross-modal alignments
in unpaired data. The framework of our RCSL is illustrated
in Figure 2, and the full training process is provided in the
supplementary material

Semi-paired Discriminative Learning
Given a cross-modal model M(Θv,Θt) = {f, g}, where
f and g are the visual and textual encoders and Θv,Θt are
the corresponding network parameters, respectively. For any
image-text pair (Ii, Tj) ∈ D, the visual-semantic similarity
could be measured by the cosine similarity, i.e., S(Ii, Tj) =
f(Ii)

⊤g(Tj)
/
∥f(Ii)∥∥g(Tj)∥, where f(Ii) ∈ Rd×1 and

g(Tj) ∈ Rd×1 are the holistic representations computed
by modality-specific encoders and d is the dimensionality
of the latent common space. Thus, the learning objective of
M is to maximize the similarities of positive pairs while
minimizing those of negative ones, which is commonly re-
alized by the inter-modal contrastive learning loss, e.g., the
Triplet Ranking Loss (Fartash et al. 2018) (TRL). TRL ex-
ploits online hard negative mining to enforce positive pairs

to be distant from any negative ones by at least a given pos-
itive margin α, which is defined as:

Ltrl(Ii, Ti) =
[
α− S(Ii, Ti) + S(Ii, T̂h)

]
+

+
[
α− S(Ii, Ti) + S(Îh, Ti)

]
+
,

(2)

where T̂h and Îh are the corresponding hardest samples of Ii
and Ti, respectively, and [x]+ ≡ max(x, 0). However, some
studies (Zhang et al. 2023b) have shown that TRL is prone
to poor/insufficient learning in early training, thus leading to
suboptimal performance. This issue is trickier in SPL (e.g.,
the results of CHAN in Table 2) due to the sparsity of limited
paired data. We think the reason is that TRL cannot effec-
tively learn a feature distribution that preserves as much in-
formation as possible from semi-paired data. Inspired by the
instance-wise contrastive learning (Wang and Isola 2020),
we propose to reconsider the properties of Alignment (A)
and Uniformity (U ) to alleviate the above problem. More
specifically, under the semi-paired setting, the two proper-
ties could be re-expressed as follows:
• Alignment: The positive samples should be close to-

gether on the hypersphere. For the semi-paired mini-
batch B, the alignment is defined as A(B) =
E
(Ii,Ti)

yi=1
∼ B

[
Dist

(
xi,yi

)]
, where E[·] is the expected

operator, xi = ℓ2(f(Ii)), yi = ℓ2(g(Ti)), ℓ2(·) is the
L2-normalized function, and Dist(xi,yi) = ∥xi − yi∥22
is the function to measure the distance of samples in the
hypersphere. The smaller A(B) is, the better for cross-
modal learning.

• Uniformity: It indicates that the cross-modal samples
should be uniformly distributed on the hypersphere
to seek a feature distribution that preserves maxi-
mal information. For the semi-paired mini-batch B =



{IB , TB ,YB}, The uniformity is defined as:

U(B) = 1

2

(
log

(
E
(Ii,Ij)

i̸=j∼ IB

[
exp(−2Dist(xi,xj))

])
+ log

(
E
(Ti,Tj)

i̸=j∼ TB

[
exp(−2Dist(yi,yj))

]))
.

(3)
Likewise, the smaller U(B) is, the better for cross-modal
learning.

Then, we utilize the Alignment and Uniformity as regulariza-
tions to empower semi-paired learning for better properties
of representations. For the training mini-batch B with the
size of K, the learning objective is defined as:

Lsdl(B) = L†
trl(B) + Lreg(B), (4)

where L†
trl is used to capture inter-modal relevance from

paired data and Lreg is the regularization loss to keep good
alignment and uniformity on the hypersphere. L†

trl is written
as:

L†
trl(B) =

K∑
i=1

yi

( [
α− S(Ii, Ti) + S(Ii, T̄i)

]
+

+
[
α− S(Ii, Ti) + S(Īi, Ti)

]
+

)
,

(5)

where T̄i = argmax
T̄ ̸=Ti

S(Ii, T̄ ), T̄ ∈ B ∩ Dp, and Īi =

argmax
Ī ̸=Ii

S(Ī , Ti), Ī ∈ B ∩ Dp. The regularization loss is:

Lreg(B) = A(B) + U(B), (6)

Thanks to Lsdl, our RCSL could fully learn the accurate vi-
sual semantic associations from limited paired data and keep
good properties of contrastive learning, which will be the ba-
sis and guarantee for subsequent cross-correlation mining.
While the Lsdl is good at exploiting known paired data to
fully learn the multimodal information, it does not explic-
itly model and learn possible potential associations from a
large amount of unpaired data, thus limiting the performance
improvement. In the next section, we provide a solution
for directly learning visual-semantic associations from large
amounts of unpaired data to robustly exploit inter-modal
knowledge, substantially enhancing the ability to benefit
from semi-paired image-text data.

Robust Cross-correlation Mining
To leverage unpaired data and facilitate semi-paired cross-
modal learning, we establish pseudo pairs from the un-
paired data and mine the latent cross-modal associations
among them. To be specific, we pair all the visual and
textual samples from Du according to the ranking results
of image-text similarities. For example, given an image Ii
in Du, the textual sample pseudo-paired with it is T ′

i =
argmaxT ′ ({S(Ii, T ′) | T ′ ∈ Tu}), and Tu is the text set in
Du. Similarly, we could easily obtain the pseudo-paired im-
age I ′i of Ti, i.e., I ′i = argmaxI′ ({S(I ′, Ti) | I ′ ∈ Iu}),
and Iu is the image set in Du.

Although we can construct pseudo-paired associations
for unpaired data through similarity ranking directly, the

constructed pseudo-paired data may have a large number
of image-text pairs with noisy correspondences (Huang
et al. 2021; Qin et al. 2022), which would mislead the
model to conduct harmful cross-modal learning. To refine
cross-modal learning robustly, we propose a robust cross-
correlation mining (RCM) loss Lrcm. Given a mini-batch
B = {IB , TB ,YB} = {(Ii, Ti, yi)}Ki=1, we can re-construct
two minded mini-batches with pseudo cross-correlations,
which are represented as:{

Bt = (B ∩ Dp) ∪ {(Ii, T ′
i )}

Ku
i=1, ∀Ii ∈ IB ,

Bv = (B ∩ Dp) ∪ {(I ′i, Ti)}Ku
i=1, ∀Ti ∈ TB ,

(7)

where T ′
i

/
I ′i are the pseudo-paired samples for Ii

/
Ti and

Ku is the number of unmatched pairs. Take the image-to-
text direction as an example, the robust mining loss for the
pseudo-paired texts in the mini-batch Bt is

Lt
rcm(B) = Lm(Bt) =

1

2

K∑
i=1

[
(1− pi2tii )+ (1− pt2iii )

]
, (8)

where pt2iii are the bidirectional matching probabilities for
pair (Ii, Ti) ∈ Bt, which are defined as:

pi2tii =
exp(S′

ii/τ)∑
Tj∈Bt

exp(S′
ij/τ)

, pt2iii =
exp(S′

ii/τ)∑
Ij∈Bt

exp(S′
ji/τ)

.

(9)
Note that S′

ij is defined as:

S′
ij =


S(Ii, Tj), if (Ii, Tj) ∈ Dp,

S(Ii, T
′
j), if Ii ∈ Ip and Tj ∈ Tu,

S(I ′i, Tj), if Ii ∈ Iu and Tj ∈ Tp,
(10)

where Ip
/
Tp is the image/text set in Dp and Iu

/
Tu is the

image/text set in Du, respectively. Likewise, the robust min-
ing loss Lv

rcm(B) for the pseudo-paired images in the mini-
batch Bv could be computed like Equation (8). Without loss
of generality, we formulate the final robust cross-correlation
mining loss as follows:

Lrcm(B) = Lt
rcm(B) + Lv

rcm(B). (11)
The intuition behind using Lrcm(Lm) lies in improving the
noise tolerance of the loss function for those mined pseudo-
paired data that may be accompanied by noisy correspon-
dence. To be convincing, we conduct the following theo-
retical analysis, i.e., Lm is robust against noisy correspon-
dences. Thus, our RCSL could robustly learn the accu-
rate visual-semantic associates from the mined informa-
tive cross-correlations, thus improving the performance of
image-text retrieval.
Theoretical Analysis. First, to facilitate analysis, we pro-
vide a definition for noisy correspondence as shown in Def-
inition 1. Based on the risk minimization theory (Manwani
and Sastry 2013), the loss function is noise-tolerant i.f.f. the
risk of learning with noisy annotations has a shared global
minimizer of the risk under no-noise case.
Definition 1 Flowing (Qin et al. 2023), we assume that
noisy correspondence is uniform and define it for any pair
(Ii, Tj) as:

c̃ij =

{
cij with probability (1− ηij),
1− cik with probability η̄ik, ∀k ̸= j.

(12)



(a) Validation (b) Testing

Figure 3: The performance versus iterations on the
Flickr30K dataset with 60% noise. ‘InfoNCE’ means the In-
foNCE loss, ‘TRL’ is the triplet ranking loss with the hardest
sample mining (Fartash et al. 2018), and ‘TRL-S’ is the sum-
mation version of TRL that considers all negative samples.

For all pairs, conditioned on that if i = j then cij = 1 else
cij = 0, we have

∑
j ̸=k η̄ik = ηij , ηij = η, and η̄ik =

η
N−1 , ∀k ̸= j, where η represents the noise rate.

For the loss Lm(Ii, Ti) = 1
2

[
(1 − pi2tii ) + (1 − pt2iii )

]
, the

relationship between the noisy risk and the clean risk is

Rη
Lm

(f) = (1− Nη

N − 1
)RLm(f) + η, (13)

where f is the decision function. Given a global mini-
mizer f∗

η of Rη
Lm

(f), we have Rη
Lm

(f∗
η ) − Rη

Lm
(f) =

(1 − Nη
N−1 )(RLm

(f∗
η ) − RLm

(f)) ≤ 0. Thus, f∗
η is also

the global minimizer of RLm
(f) i.f.f. n ≤ N−1

N , which
gives Lemma 1. Different from Lm, none of the widely-
used contrastive losses, i.e., InfoNCE, TRL, and TRL-S, can
share a minimizer on clean risk and noise risk, thus they are
not robust. To demonstrate this, we visualize their perfor-
mances versus iterations on the noisy dataset in Figure 3.
From the results, except for our Lm, all others more or less
produced noise overfitting, and TRL even brings a failed
cross-modal learning, which is consistent with the above
theoretical analysis.

Lemma 1 In an instance-level image-text retrieval prob-
lem, Lm is noise-tolerant against uniform noisy correspon-
dences i.f.f. noise rate η < N−1

N .

RCSL for Noisy Correspondence Learning
Obviously, our RCSL can be used to handle NCs by parti-
tioning the data. We perform a preliminary partitioning of
the data through a warm-up process and treat the partitioned
clean set as a paired set and the noisy set as an unpaired set to
implement semi-paired learning. We call the variant RCSL-
NC for a clearer expression. Due to space limitations, we put
more details in the supplementary material.

Experiments
In this section, we conduct comprehensive experiments
on three widely-used benchmark datasets, i.e., Flickr30K
(Young et al. 2014), MS-COCO (Lin et al. 2014), and
CC152K (Huang et al. 2021), to demonstrate the superiority

Datasets Paired #Training #Validation #Testing

Flickr30K
25K 5,000/24,000 1,000 1,000
2.5K 500/28,500 1,000 1,000

MS-COCO
25K 5,000/108,287 5,000 5,000
2.5K 5,00/112,787 5,000 5,000

Drone-SP 962 962/5,310 500 500

Table 1: Brief statistics of the semi-paired datasets used in
our experiments. “Paired” means the paired image-text pairs
in the semi-paired dataset. The former of “/” is the number
of training images in the paired set, and the latter is the num-
ber of training images in the unpaired set. Each image in the
Flickr30K and MS-COCO datasets has five paired captions.

and effectiveness of our RCSL. Besides, we construct a new
benchmark to evaluate semi-paired learning, i.e., Drone-SP,
which is a special dataset for drone image-text retrieval.
Note that due to space limitations, we put more compara-
tive experiments and exploratory experimental results in the
supplementary material.

Datasets and Evaluation Protocols
Datasets For the semi-paired setting, we utilize the
Flickr30K (Young et al. 2014), MS-COCO (Lin et al.
2014), and Drone-SP datasets to evaluate our methods. For
Flickr30K and MS-COCO, we construct unpaired data pairs
by randomly shuffling the captions. Table 1 shows the brief
statistics of the partitions under the semi-paired setting. For
noise setting, following (Huang et al. 2021), we inject un-
matched correspondences of different ratios by proportion-
ally shuffling the captions on the Flickr30K and MS-COCO
training datasets, i.e., 20%, 40%, 60%, and 80% noise rates.
Besides, we evaluate our method on the real noisy dataset of
CC152K to further verify the robustness. All dataset details
are provided in the supplementary material.

Evaluation Protocols Following (Qin et al. 2022), we
adapt Recall at K (R@K=1, 5, and 10) and their sum
(rSum) to evaluate the performance of bidirectional re-
trievals. Specifically, R@K is defined as the proportion of
the correct items in the top-K retrieved results. Our exper-
iments were conducted on Nvidia GeForce RTX 3090 and
A800 GPUs.

Comparisons with State-of-the-Arts
In this section, we evaluate our RCSL by compar-
ing it with ten baselines on the two benchmarks with
the same semi-paired setting, including the global-level
methods: VSE∞ (CVPR’21) (Chen et al. 2021), 2AD
(ACL’23) (Zhang et al. 2023b), HREM (CVPR’23) (Fu
et al. 2023), ESA (TCSVT’23) (Zhu et al. 2023), and FEM
(ICASSP’24) (Wang, Yin, and Ramakrishnan 2024); The
local-level methods: NAAF (CVPR’22) (Zhang et al. 2022),
RCAR (TIP’23) (Diao et al. 2023), CHAN (CVPR’23) (Pan,
Wu, and Zhang 2023), LAPS (Fu et al. 2024), and X-
Dim (Zhang et al. 2023a). Since these baselines cannot ex-
ploit unpaired data, we train them with the paired training
set. To verify the effectiveness of the variant RCSL-NC, we
compare it with four robust baselines against noisy corre-



Flickr30K 1K MS-COCO 5-fold 1K MS-COCO 5K
Image−→Text Text−→Image Image−→Text Text−→Image Image−→Text Text−→Image

PairedMethods R@1R@5R@10R@1R@5R@10 rSum R@1R@5R@10R@1R@5R@10 rSum R@1R@5R@10R@1R@5R@10 rSum

25K

VSE∞(’21) 51.4 77.2 85.8 35.2 63.3 73.9 386.8 49.8 80.9 89.6 36.7 70.2 81.8 409.0 27.5 54.8 67.4 18.2 42.1 54.7 264.7
NAAF(’22) 56.1 83.8 91.1 44.6 72.1 80.8 428.5 54.1 85.5 93.0 44.3 77.0 87.4 441.3 29.4 59.8 73.3 23.9 50.6 63.0 300.0
RCAR(’23) 35.9 65.7 78.4 25.1 54.5 67.6 327.2 41.4 75.1 86.9 31.7 66.9 80.4 382.4 19.6 46.0 59.2 14.5 36.6 49.9 225.8
2AD(’23) 31.9 60.5 71.7 45.0 73.1 82.0 364.2 34.4 68.4 80.8 46.1 78.6 89.3 397.6 16.3 39.8 52.6 23.5 50.5 64.1 246.8
CHAN(’23) 56.5 81.0 89.8 40.8 70.7 80.4 419.2 53.6 84.3 92.5 41.8 76.2 87.5 435.9 29.1 59.2 72.0 22.1 47.5 61.2 291.1
HREM(’23) 57.9 82.7 89.5 41.3 69.6 79.1 420.1 54.1 84.0 92.2 39.8 73.8 85.4 429.3 31.0 59.6 71.7 20.2 45.6 58.7 286.8
ESA(’23) 60.4 84.1 89.7 41.1 69.9 78.9 424.1 33.2 61.6 73.1 24.7 52.5 66.0 311.1 17.8 36.6 46.5 11.6 28.1 38.2 178.8
LAPS(’24) 45.3 75.5 84.0 34.2 64.0 75.0 378.0 46.5 79.3 89.8 35.5 71.6 84.3 407.3 22.7 50.7 64.0 16.6 40.8 54.7 249.5
X-Dim(’24) 56.9 81.4 88.4 41.0 67.9 78.0 413.6 55.3 85.1 92.9 42.6 75.8 86.8 438.5 31.0 61.3 73.5 22.9 48,2 61.3 298.2
FEM(’24) 56.8 83.1 90.3 38.8 67.4 77.4 413.8 55.8 84.8 92.8 40.0 74.6 85.9 433.9 31.7 60.2 72.3 20.3 45.7 58.7 288.9
RCSL 63.6 88.1 92.9 46.2 73.9 82.7 447.4 60.6 88.2 94.7 46.4 78.6 87.7 456.2 36.7 66.2 78.5 25.7 53.2 65.6 325.9

2.5K

VSE∞(’21) 6.5 16.6 24.9 6.6 18.9 27.6 101.1 11.8 34.1 47.8 9.1 28.4 40.9 172.1 3.7 12.7 20.5 3.0 10.2 16.7 66.8
NAAF(’22) 23.2 49.1 62.0 18.5 42.2 53.9 248.9 24.4 56.7 72.4 21.6 52.4 68.3 295.8 9.4 26.8 39.2 8.7 24.5 35.3 143.9
RCAR(’23) 2.5 8.5 14.9 2.8 10.5 16.3 55.5 10.6 32.0 45.1 6.9 22.7 34.2 151.5 3.0 11.3 18.2 2.2 7.8 12.8 55.3
2AD(’23) 6.3 18.9 27.6 8.7 24.5 35.2 121.2 9.4 29.1 42.4 12.3 35.9 49.8 178.9 2.9 10.4 16.9 3.8 13.1 21.0 68.1
CHAN(’23) 1.2 4.5 9.0 1.1 4.4 8.4 28.6 16.6 48.0 64.7 16.9 45.8 62.6 254.6 4.1 17.2 28.4 6.2 18.9 29.2 104.0
HREM(’23) 20.7 44.6 56.7 15.1 38.1 51.3 226.5 19.7 48.2 63.6 15.7 42.9 59.3 249.4 7.3 21.0 31.7 5.5 17.1 26.7 109.3
ESA(’23) 16.6 40.2 52.2 11.9 32.4 45.6 198.9 11.7 32.1 44.8 9.5 28.0 40.6 166.7 3.7 12.4 19.5 3.2 10.3 16.5 65.6
LAPS(’24) 15.2 38.8 52.3 12.8 32.7 44.7 196.5 19.6 48.7 63.7 15.6 44.5 60.8 252.9 6.8 20.1 30.3 5.2 17.6 27.5 107.5
X-Dim(’24) 13.0 35.9 47.6 11.2 30.6 42.4 180.7 14.0 40.7 57.3 12.8 37.4 53.5 215.7 4.4 15.1 24.1 3.9 13.9 22.2 83.6
FEM(’24) 16.9 42.0 54.5 8.6 25.3 36.0 183.3 21.1 51.1 66.5 13.1 37.9 53.0 242.7 7.8 22.2 33.8 7.8 22.2 33.8 127.6
RCSL 25.5 51.8 63.5 18.2 42.6 54.9 256.5 34.6 66.4 79.3 26.5 59.3 73.5 339.6 15.7 37.4 49.8 11.3 30.4 42.6 187.2

Table 2: Performance on the Flickr30K and MS-COCO datasets under the semi-paired setting. The best results are in bold.

Flickr30K MS-COCO
Image → Text Text → Image Image → Text Text → Image

Noise Methods R@1 R@5 R@10 R@1 R@5 R@10 rSum R@1 R@5 R@10 R@1 R@5 R@10 rSum

20%

NCR(’21) 76.7 93.9 96.9 57.5 82.8 89.2 497.0 77.0 95.6 98.1 61.5 89.3 95.1 516.6
DECL(’22) 75.6 93.8 97.4 58.5 82.9 89.4 497.6 77.1 95.9 98.4 61.6 89.1 95.2 517.3
MSCN(’23) 77.4 94.9 97.6 59.6 83.2 89.2 501.9 78.1 97.2 98.8 64.3 90.4 95.8 524.6
CREAM(’24) 77.4 95.0 97.3 58.7 84.1 89.8 502.3 78.9 96.3 98.6 63.3 90.1 95.8 523.0
RCSL-NC 80.6 95.3 97.9 60.2 85.4 91.2 510.6 78.8 96.0 98.4 63.0 90.3 95.6 522.1

40%

NCR(’21) 75.3 92.1 95.2 56.2 80.6 87.4 486.8 76.5 95.0 98.2 60.7 88.5 95.0 513.9
DECL(’22) 72.5 93.1 97.0 55.8 81.2 88.1 487.7 77.1 95.7 98.3 61.5 89.2 95.3 517.1
MSCN(’23) 74.4 94.4 96.9 57.2 81.7 87.6 492.2 74.8 94.9 98.0 60.3 88.5 94.4 510.9
CREAM(’24) 76.3 93.4 97.1 57.0 82.6 88.7 495.1 76.5 95.6 98.3 61.7 89.4 95.3 516.8
RCSL-NC 79.1 94.0 97.4 58.5 84.1 90.1 503.2 77.9 95.9 98.5 61.7 89.6 95.2 518.8

60%

NCR(’21) 68.7 89.9 95.5 52.0 77.6 84.9 468.6 72.7 94.0 97.6 57.9 87.0 94.1 503.3
DECL(’22) 69.4 89.4 95.2 52.6 78.8 85.9 471.3 73.8 94.7 97.7 59.6 87.9 94.5 508.2
MSCN(’23) 70.4 91.0 94.9 53.4 77.8 84.1 471.6 74.4 95.1 97.9 59.2 87.1 92.8 506.5
CREAM(’24) 70.6 91.2 96.1 53.3 79.2 87.0 477.4 74.7 94.8 98.0 59.7 88.0 94.6 509.9
RCSL-NC 75.6 93.6 97.2 56.4 82.1 88.9 493.8 75.5 95.0 98.3 59.9 88.4 94.4 511.5

80%

NCR(’21) 1.4 7.1 11.7 1.5 5.4 9.3 36.4 21.6 52.6 67.6 15.1 38.1 49.8 244.8
DECL(’22) 60.7 84.6 91.2 42.1 69.6 78.6 426.8 65.6 91.6 96.6 52.0 83.0 91.3 480.1
MSCN(’23) 1.0 4.4 9.1 0.4 1.4 2.5 18.8 66.8 91.6 96.2 52.7 83.0 90.9 481.2
CREAM(’24) 56.1 81.2 88.4 39.2 66.7 76.2 407.8 68.6 92.0 96.4 54.3 84.8 92.5 488.7
RCSL-NC 70.3 89.8 94.3 50.6 77.8 85.7 468.5 72.3 94.0 97.4 56.5 86.1 93.1 499.4

Table 3: Performance on the Flickr30K and MS-COCO datasets under the noisy setting. The best results are in bold.

spondence: NCR (NeurIPS’21) (Huang et al. 2021), DECL
(ACM MM’22) (Qin et al. 2022), MSCN (CVPR’23) (Han
et al. 2023), and CREAM (TIP’24) (Ma et al. 2024). To be
fair, the backbones of all baselines are unified.

Results on the semi-paired data: From the results shown
in Table 2, (1) the performance of all evaluated baselines
remarkably deteriorates as the number of paired data de-
creases, indicating a heavy dependency on a large amount
of paired data. As demonstrated by the experimental results,

when the paired number is decreased from 25K to 2.5K, the
overall performance (rSum) of the latest baseline FEM de-
creases by 230.5 and 191.2 on the Flickr30K 1K test and
the MS-COCO 5-fold 1K test, respectively. Although our
RCSL also suffers performance degradation due to the re-
duction of paired data, compared to FEM, the amplitude
is smaller (i.e., 230.5 vs. 190.9 and 191.2 vs. 116.6) and
shows promising performance. (2) When there is very lit-
tle pairing data (2.5K), most baselines struggle to converge



due to the insufficient number of paired data, resulting in
inadequate performance, e.g., 2AD, CHAN, and etc. In con-
trast, our RCSL method addresses the limitation of learn-
ing knowledge solely from paired data by mining poten-
tial visual-semantic associations from a large amount of un-
paired data. As seen in Table 2, our method achieves the
best performance in almost all metrics with a notable ad-
vantage, demonstrating the effectiveness and superiority of
semi-paired cross-modal learning.

To further verify the necessity of our method, we also
conduct experiments with CLIP on a constructed real-world
dataset (i.e., Drone-SP) that includes a limited number of
carefully annotated instances as well as a large amount of
unpaired data from the Internet. From the results shown
in Table 4, one can see that the zero-shot performance of
CLIP is poor, with only 12.3% in terms of R@1. Although
fine-tuning CLIP on the paired dataset significantly im-
proves the performance, our method, even our RCSL with-
out RCM can remarkably outperform fine-tuned CLIP by
a large margin. Furthermore, since RCM can robustly ex-
tract visual semantic associations from pseudopaired data,
the performance of RCSL equipped with RCM is fur-
ther improved by 13.2% absolutely in terms of rSum, fur-
ther demonstrating the effectiveness and practicality of our
RCSL in real-world scenarios.

Image−→Text Text−→Image
Methods R@1R@5R@10 R@1R@5R@10 rSum
CLIP⋆ 11.2 28.2 39.8 12.6 28.6 38.0 158.4
CLIP 37.0 73.2 85.4 32.6 68.2 79.8 376.2
RCSL w/o RCM 40.8 74.4 87.0 34.6 67.0 82.8 386.6
RCSL 40.8 75.8 88.4 38.2 71.4 85.2 399.8

Table 4: Performance (R@K %) on the Drone-SP dataset.
‘⋆’ means the zero-shot results.

Image → Text Text → Image
Methods R@1 R@5 R@10 R@1 R@5 R@10 rSum
NCR 39.5 64.5 73.5 40.3 64.6 73.2 355.6
DECL 39.0 66.1 75.5 40.7 66.3 76.7 364.3
MSCN 40.1 65.7 76.6 40.6 67.4 76.3 366.7
CREAM 40.3 68.5 77.1 40.2 68.2 78.3 372.6
RCSL-NC 45.7 70.4 77.9 43.5 70.8 79.9 388.2

Table 5: Performance (R@K %) on the CC152K dataset with
real noisy correspondence. The best results are in bold.

Results on the noisy data: We report the quantitative re-
sults on the synthetic noisy data in Table 3 and the results
on the real noisy data in Table 5. Note that we do not report
the ensemble performance of multiple models as in (Huang
et al. 2021; Qin et al. 2022; Yang et al. 2023). From the
results in Table 3, one can see that our RCSL-NC shows ex-
cellent performance on both datasets and almost all exceed
the compared baselines. Besides, our RCSL-NC is very sta-
ble under high noise, i.e., 60% and 80%. Specifically, our
method exceeds the best baseline in terms of rSum by 41.7%
and 9.7% on the two datasets with 80% noise. Besides, our
method also performs all baselines excellently under the real

No. Methods Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10 rSum

#1 RCSL (FULL) 63.6 88.1 92.9 46.2 73.9 82.7 447.4
#2 - w/o Lreg 62.8 85.6 92.2 45.9 73.4 82.2 442.2
#3 - w/o L†

sdl 48.8 72.8 82.5 34.1 62.5 73.7 374.4
#4 - w/o Lt

rcm 62.5 85.7 92.3 44.5 72.4 81.9 439.3
#5 - w/o Lv

rcm 62.5 85.1 91.9 44.5 72.9 81.4 438.3
#6 - w/o Lrcm 60.0 84.6 90.9 42.3 71.6 80.8 430.2
#7 - w/o Lreg & Lrcm 58.4 83.7 90.5 41.8 71.3 80.5 426.2
#8 - w/o L†

sdl & Lrcm 37.0 64.6 74.3 20.7 47.6 60.3 304.5

Table 6: Ablation studies on the Flickr30K dataset with 5K
paired data. Default settings are marked in gray .

noisy dataset CC152K. The quantitative results are shown
in Table 5. From the results, our RCSL-NC prevails over
CREAM by 15.6% in terms of rSum absolutely.

Ablation Study
In this section, we perform ablation experiments to investi-
gate the individual contributions of each component to our
RCSL. All experiments are conducted under the semi-paired
settings on the Flickr30K dataset with 25K paired data. The
retrieval results of various RCSL variants with different con-
figurations are presented in Table 6. From the results, our full
version of RCSL is the best, which shows that all compo-
nents are important to obtaining promising performance. #2
shows that maintaining the good properties of representation
learning can bring performance gains. #4-6 are the experi-
ments to explore the effect of the proposed RCM, wherein
#4 means only learning with the mined texts during RCM,
and #5 means only learning with the mined images. #4-6
verify the effectiveness of learning with the mined cross-
correlations through RCM. Compared with #1 and #6, the
full version of RCSL (i.e., #1) is greatly improved (over 10%
on rSum) through robust cross-association mining (RCM),
which shows that it is feasible to mine visual-semantic in-
formation from unpaired data in an end-to-end manner. #7-
8 shows that each proposed item is beneficial for the per-
formance of cross-modal retrieval, and our standard version
#1 is the balanced and optimal result of each item. In con-
clusion, the experimental results demonstrate the effective-
ness of each component and show that it is helpful for semi-
paired cross-modal learning.

Conclusion
In this paper, we reveal and study a new learning paradigm
for image-text retrieval, called semi-paired cross-modal
learning. Unlike the existing paradigms, this paradigm at-
tempts to mitigate the requirement of fully-paired data by
endowing the model with exploiting unpaired data. To this
end, we propose a Robust Cross-modal Semi-paired learning
method (RCSL) to extract visual-semantic associations from
paired as well as unpaired data. Besides, we proved that SPL
is also a feasible solution to solve the noisy correspondence
problem, which will provide a new perspective for future
image-text retrieval. We perform extensive experiments on
four datasets to verify the effectiveness and superiority of
the proposed method in the semi-paired and noisy setting.
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