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Abstract

Recent advancements in Pre-trained Language Models
(PLMs) have significantly enhanced performance across var-
ious Natural Language Processing (NLP) tasks. However,
the variability in data distributions across different domains
presents challenges in generalizing these models to unseen
domains. Domain generalization offers a promising solu-
tion, but existing text domain generalization methods typi-
cally rely on adversarial training to learn domain-invariant
features, which often leads to models with high compu-
tational and memory overhead. To address this issue, this
paper proposes a novel solution named Generalization via
Prompts and Contrastive Learning (GenPromptCL) to en-
hance the generalization capability in domain generalization.
GenPromptCL consists of two key components: Domain-
Misleading Prompt Learning (DMPL) and Pseudo Label-
based Contrastive Learning (PCL). Specifically, DMPL dis-
rupts domain labels randomly, misleading the model into
producing incorrect domain labels. This forces the model to
learn domain-invariant features. Meanwhile, PCL generates
pseudo labels within a single mini-batch, enabling the model
to learn both intra-class and inter-class discriminative repre-
sentations with low time and space complexity. Extensive ex-
perimental results demonstrate that GenPromptCL achieves
state-of-the-art performance on three distinct text classifica-
tion tasks (sentiment analysis, rumor detection, and natural
language inference) while significantly improving model op-
eration efficiency.

Code — https://github.com/Balding-Lee/GenPromptCL

Introduction
Domain generalization (DG) aims to train a model on multi-
ple source domains with varying distributions, enabling it
to generalize well to unseen target domains (Wang et al.
2023a). While DG has been extensively studied in the field
of computer vision (CV)—where humans can easily dis-
tinguish between domains in different images (e.g., rainy,
foggy, sunny) (Wang et al. 2023c; Yao et al. 2024; Yin et al.
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2025; Liu et al. 2024; Wen et al. 2024). In contrast, DG
has garnered less attention in natural language processing
(NLP) compared to CV, primarily because pre-trained lan-
guage models (PTLMs) (Devlin et al. 2019; Liu et al. 2019;
Lei et al. 2022) already demonstrate strong performance in
general scenarios.

However, recent studies (Guo and Yu 2022; Ding et al.
2022; Ling et al. 2024; Yang et al. 2024) have shown that
even large language models (LLMs) struggle with domain
gaps, particularly in sensitive areas such as medical and le-
gal texts, where privacy concerns often prevent access to
domain-specific data during training. For example, in med-
ical scenarios, models trained in general corpora frequently
fail to capture the nuances in medical terminology, resulting
in suboptimal predictions. Additionally, PDA (Jia and Zhang
2022) attempts to minimize the distance between word and
sentence representations from different domains, indicating
that domain discrepancies persist in natural language. Fur-
thermore, our experiments reveal that, in sentiment analysis
tasks, identical words exhibit different distributions across
domains (as Fig. 1a shows), and sentences with the same
sentiment polarity also show distinct representation distribu-
tions (as Figs. 1b and 1c show). These findings highlight the
persistent challenge posed by domain differences in natural
language and underscore the need for robust domain gener-
alization methods to ensure consistent performance across
unseen domains without requiring additional training.

Existing text domain generalization methods can be
broadly divided into two main approaches: 1) Learning
domain invariant representations via adversarial training.
These methods adopt adversarial training to learn domain-
invariant representations by designing n domain discrimina-
tors (n is the number of source domains) (Wang et al. 2019b;
Jia and Zhang 2022; Bhattacharjee et al. 2024). The discrim-
inators aim to classify the domains of the input data as ac-
curately as possible, while the model generates representa-
tions that are challenging for the discriminators to classify
correctly, thus promoting the learning of domain-invariant
features. 2) Learning intra- and inter-class distributions via
contrastive learning. Contrastive learning is widely used in
cross-domain learning, as it helps cluster data effectively and
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Figure 1: We use RoBERTa-base to extract the last hidden states of words and sentences from four domains (book (B), dvd (D),
electronics (E), kitchen (K)) in the Amazon dataset and adopt t-SNE to visualize their distributions. Different colors indicate
different domains. (a) Representations of the top 100 most frequent words. (b) Representations of positive sentences. And (c)
representations of negative sentences.

enables the model to learn both intra- and inter-class rela-
tionships (Tan et al. 2022; Pu et al. 2025; Wang et al. 2024b,
2025). Most of these methods rely on data augmentation
techniques to generate positive and negative samples (Wang
et al. 2023b; Bhattacharjee et al. 2023; Wang et al. 2022).
Although these methods improve model generalization, they
still face several limitations: (1) Adversarial training suffers
from high computational complexity. In classification tasks
with n source domains and k categories, the computational
complexity of adversarial training is O(k·n2) (Jia and Zhang
2022). (2) Data augmentation methods often fail to enhance
performance in NLP tasks. Research has shown that text data
augmentation does not always improve model performance
and may even lead to degradation (Kobayashi 2018; Wei and
Zou 2019). Furthermore, it can disrupt the syntactic struc-
ture and semantic integrity of the text (Fadaee, Bisazza, and
Monz 2017).

To address the challenges outlined above, we pro-
pose a new text domain generalization framework named
Generalization via Prompts and Contrastive Learning
(GenPromptCL). Specifically, GenPromptCL contains two
innovative modules: Domain Misleading Prompt Learn-
ing (DMPL) and Pseudo Label-based Contrastive Learning
(PCL). In contrast to adversarial training methods for learn-
ing domain-invariant features, the DMPL module employs
prompt-based learning to guide the model in predicting the
domain of the data, while intentionally misleading the model
by assigning incorrect domain labels. This strategy ensures
that the model effectively learns domain-invariant fea-
tures without requiring additional trainable parameters
or increasing runtime. Meanwhile, the PCL module facili-
tates the learning of both inter- and intra-class discriminative
features within a mini-batch, without the need for data aug-
mentation. It constructs a pseudo-label matrix that reduces
the discriminability of intra-class data while enhancing the
discriminability of inter-class data. This approach enables
the model to capture the discriminative features of the
data better, ensuring improved generalization.

The main contributions and novelties of this work are
shown as follows:
• We introduce a new text domain generalization approach

named GenPromptCL. This method significantly im-
proves the domain generalization performance in text
classification while reducing the learning cost.

• We present a novel Domain-Misleading Prompt Learning
strategy (DMPL) for learning domain-invariant repre-
sentations. This module achieves better domain-invariant
feature learning with lower computational complexity
compared to adversarial training approaches.

• We elaborate on a simple yet effective Pseudo Label-
based Contrastive Learning (PCL) module for clustering
samples, enabling the model to learn discriminative in-
formation. PCL eliminates the need for data augmenta-
tion, thus reducing computational cost.

• We conduct extensive experiments on three text clas-
sification tasks-sentiment analysis, rumor detection,
and natural language inference-demonstrating that Gen-
PromptCL achieves state-of-the-art performance in do-
main generalization for text classification.

Related Work
Domain Generalization. Domain generalization methods
aim to train a model on multiple source domains with vary-
ing data distributions and enable the model to generalize
to unseen target domains (Wang et al. 2023a). Existing ap-
proaches focus on training the model to learn both domain-
invariant features and discriminative features between differ-
ent categories. Some methods employ min-max adversarial
training to learn domain-invariant representations, as adver-
sarial training can encourage the model to generate domain-
invariant features (Jia and Zhang 2022; Bhattacharjee et al.
2024). However, adversarial training is computationally ex-
pensive. To enable the model to learn discriminative features
between categories, several methods use data augmentation
techniques to generate positive and negative samples, fol-
lowed by contrastive learning to enhance feature discrimi-
nation (Wang et al. 2024a). However, data augmentation in
NLP often disrupts the semantic and syntactic integrity of
the text (Fadaee, Bisazza, and Monz 2017) and its effective-
ness is inconsistent, sometimes failing to yield promising re-
sults (Kobayashi 2018; Wei and Zou 2019). Moreover, data



[CLS]

[SEP]

[SEP]

[CLS]

[SEP]

[SEP]
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[SEP]

Backbone

Domain prompt 

token

Category 

prompt token

Input Texts

Different domains

Figure 2: The model architecture of the proposed method. First, we tokenize the input texts and concatenate tokens with
domain-misleading and classification prompts. Then, we feed tokens into the backbone model and output the hidden states
of [CLS], [MASK]S , and [MASK]D. After that, we perform pseudo-label-based contrastive learning on [CLS], domain-
misleading prompt learning on [MASK]D, and discriminative learning on [MASK]S . Finally, we adopt the losses obtained
above to train our model.

augmentation-based methods increase the model’s training
cost (Li et al. 2025a,b). In contrast to these computation-
ally intensive approaches, our method seeks to adopt a
low-cost strategy to learn domain-invariant features and
both intra- and inter-class discriminative information ef-
ficiently.

Prompt Learning of Masked Language Models. Tra-
ditional pre-trained language models typically fine-tune
task-specific classifiers for downstream tasks, which limits
the effective utilization of the pre-trained knowledge em-
bedded in the models (Liu et al. 2023). Prompt learning
aims to efficiently utilize the pre-trained parameters with-
out adding additional trainable parameters that require fine-
tuning. Prompt learning based on masked language model
(such as BERT (Devlin et al. 2019), RoBERTa (Liu et al.
2019)) treats the task as a “cloze” task (Lin et al. 2020).
For instance, given the sentence “I love this movie.” with
the prompt “Overall, it was [MASK].”, the model can di-
rectly predict [MASK] as good without fine-tuning any pa-
rameters. In addition to cloze tests, scholars also use learn-
able prompt templates to enable the model to learn bet-
ter prompt templates, thereby enhancing the model’s per-
formance (Wen et al. 2025). Moreover, in domain gener-
alization, some methods leverage prompt learning to gen-
erate continuous prompts from input samples, allowing the
model to infer the domain of the input data (Zhou et al. 2022;
Bose et al. 2024). However, continuous prompts are often
not easily interpretable, leading to weaker interpretability.
Inspired by the advantages of prompt learning, we adopt
this parameter-efficient fine-tuning approach to reduce the
computational cost. Additionally, we use manually designed
prompts to improve the interpretability of the model.

Methodology
Problem Formulation
Problem Definition. The entire dataset D is divided into
N(N > 2) domains D = {X i}Ni=1. Each domain consists

texts and labels, where X i = {T i
j , y

i
j}n

i

j=1, with ni repre-
sents the number of samples in the i-th domain. Here, T i

j and
yij refer to the j-th text and its corresponding label in the i-th
domain, respectively. Meanwhile, domains are characterized
by different data distributions, i.e., P (T i) ̸= P (T j)(i ̸=
j), where T i = {T i

j }n
i

j=1 and P (T i) denotes the data dis-
tribution of the i-th domain. However, the label space is con-
sistent across domains, i.e., Yi = Yj , where Yi = {yij}cj=1,
and c represents the number of categories. We use the leave-
one-domain-out evaluation method (Jia and Zhang 2022) to
evaluate the generalization of our model. Specifically, we
select n = N − 1 domains as source domains, denoted by
X src = {T i

src,Y
i
src}ni=1, and leave one domain as the tar-

get domain X tgt = {T tgt,Ytgt}. The model is trained on
X src and tested on X tgt.

Overview. The model architecture of GenPromptCL is
shown in Fig. 2. Specifically, GenPromptCL adopts the
Domain-Misleading Prompt Learning (DMPL) module to
learn domain-invariant features. Meanwhile, GenPromptCL
utilizes the Pseudo Label Contrastive Learning (PCL) mod-
ule to capture inter- and intra-class discriminative informa-
tion. Furthermore, GenPromptCL includes a classification
module to distinguish between different categories. These
three objectives are jointly optimized to enhance the perfor-
mance of domain generalization in text classification.

Learning Discriminative Representations via
Classification Loss
We use a prompt-based classification method to train the
model, aligning text features with corresponding labels to
improve its discriminative power.

Specifically, let the input texts be Tsrc = {T i
src}ni=1.

We first concatenate each text with two manually designed
prompt templates tempS and tempD. Both templates con-
tain prompt tokens with a mask token. The mask token of
tempS , denoted as [MASK]S , is used to predict the cate-
gory label of the input text. Similarly, tempD has a mask



token [MASK]D, which is used to predict the domain la-
bel. In addition, following the tradition of masked language
models, we concatenate the special tokens [CLS] and [SEP]
to the input text. Thus, the final input texts are denoted as:

T̃src = [CLS] tempD [SEP] tempS Tsrc [SEP]. (1)

After constructing the input texts, we feed them into a pre-
trained masked language model M to obtain the text repre-
sentations,

h = M(T̃src; θM), (2)

where θM represents the trainable parameters of M. The
output h contains the hidden states of [MASK]D (denoted
as hD) and [MASK]S (denoted as hS). Both hD and hS

are matrices of dimension hD,hS ∈ Rb×V , where b is the
batch size and V is the vocabulary size.

In the prompt learning process, the classification module
retrieves the answer tokens for prompt learning from the cat-
egory verbalizer VS . It then identifies the corresponding hid-
den states for these tokens in hS . Finally, the classification
module adopts softmax to compute the pseudo-distributions
of these logits and extracts the word with the highest prob-
ability as the predicted category label ỹce. The process is
formulated as follows,

ỹce = arg max
vS
i ∈VS

exp(f(hS , v
S
i ))∑nS

j=1 exp(f(hS , vSj ))
, (3)

where nS is the number of words in VS , vSi is the i-th word
in VS , and f(hS , v

S
i ) represents the function that computes

the logits for the i-th word in hS .
Finally, GenPromptCL computes the cross-entropy loss

between ỹce and the true category label yce, as follows:

Lce = −
Nsrc∑
i=1

yice log(ỹ
i
ce), (4)

where Nsrc is the number of training samples in the source
domains.

Learning Domain-Invariant Representations via
Domain Misleading Prompt Learning
The Classification module aligns sentence representations
with the category labels of the samples, enabling the model
to learn category-specific information. However, this align-
ment also amplifies domain differences. To mitigate this,
GenPromptCL incorporates the Domain-Misleading Prompt
Learning (DMPL) module to learn domain-invariant fea-
tures while maintaining low computational complexity.

In Equation (2), we obtain the hidden states hD corre-
sponding to the domain mask token [MASK]D. Using Equa-
tion (3), we then extract the predicted domain label ỹD from
the domain verbalizer VD.

Traditional methods adopt cross-entropy to compute the
difference between the predicted domain label ỹD and the
true domain label yD. To encourage the model to learn
domain-invariant representations, the DMPL module intro-
duces domain-misleading labels during training. Specifi-
cally, for the i-th input text belonging to the j-th source

domain T i
src ∈ Dj

src, we randomly alter the domain label.
First, let the set of domain labels satisfy the uniform dis-
tribution Dsrc ∼ Uniform(0, n). At each step, we select a
new domain label yr from this distribution and replace the
original label yD with yr, provided that yr ̸= yD, other-
wise, we re-draw the label. This process is formally defined
in Equation (5).

yiD := yir if yir ̸= yiD. (5)

At last, we adopt cross-entropy loss to compute the do-
main misleading loss Ldm, as follows,

Ldm = −
Nsrc∑
i=1

yiD log(ỹiD). (6)

Since the domain labels are randomly shuffled, the model
finds it challenging to accurately assign data to the correct
domain during classification. This encourages the model to
focus more on domain-invariant features in the text, ensuring
better classification accuracy on downstream tasks.

Learning Intra- and Inter-Class Distributions via
Pseudo Label-based Contrastive Learning
The DMPL module helps the model learn domain-invariant
features by bringing data from different domains closer to-
gether. However, this comes at the cost of reducing the dis-
criminability between data from different categories. Tra-
ditional methods often use data augmentation-based con-
trastive learning, such as synonym replacement, to en-
hance discriminative learning between samples (Wang et al.
2023b; Bhattacharjee et al. 2023, 2024). However, syn-
onym replacement can disrupt the text’s syntactic and se-
mantic structures, often leading to undesirable outcomes in
NLP (Kobayashi 2018; Wei and Zou 2019; Fadaee, Bisazza,
and Monz 2017). For instance, “A dog bit a man.” might be
replaced by “A dog became a man.”, resulting in an illogi-
cal statement. To address this issue, the PCL module intro-
duces a pseudo-label matrix as supervision for contrastive
learning. This matrix captures the similarity or dissimilar-
ity between samples from different domains, enabling the
model to learn discriminative features between these sam-
ples within a single batch.

Specifically, given a batch of data T B ∈ Rb with corre-
sponding labels YB ∈ Rb, it contains data from all source
domains. We first construct pseudo-labels Yp via YB . If the
label of the i-th text is the same as the label of the j-th text,
then the pseudo-label yijp is 1, otherwise is 0:

yijp =

{
1 if yi = yj

0 otherwise
. (7)

The pseudo-label matrix Yp is then represented as:

Yp =


1 y12p · · · y1bp
y21p 1 · · · y2bp

...
...

. . .
...

yb1p yb2p · · · 1

 . (8)



Model DEK→B BEK→D BDK→E BDE→K Avg.
SimCSE 91.17± 0.16 90.10± 0.39 92.27 ± 0.22 93.87± 0.05 91.85± 0.21
SwAV 90.83± 0.10 89.90± 0.41 92.00± 0.29 93.65± 0.32 91.60± 0.28
IRM 55.34± 5.74 51.19± 5.44 60.56± 2.62 64.40± 1.07 57.87± 2.88

DeepCORAL 77.23± 3.23 81.55± 0.80 83.98± 0.71 80.56± 2.93 80.83± 1.92
MSCL 91.10± 0.33 89.78± 0.28 92.10± 0.16 93.50± 0.18 91.60± 0.05
PDA 91.28± 0.31 90.17± 0.38 91.70± 0.15 93.47± 0.09 91.65± 0.17

EAGLE 91.20± 0.26 90.00± 0.23 92.15± 0.22 93.78± 0.09 91.78± 0.15
TACIT 89.75± 0.53 89.05± 0.17 91.17± 0.48 93.60± 0.29 90.89± 0.37

DomCLP 90.88± 0.23 89.20± 0.27 92.03± 0.30 93.20± 0.16 91.33± 0.24
GenPromptCL (ours) 91.67 ± 0.15 90.18 ± 0.02 92.27 ± 0.09 94.03 ± 0.13 92.04 ± 0.10

Table 1: The comparison experimental results on the Amazon dataset (%). We bold the best results.

Model CH FG GW OS SS Avg.
SimCSE 80.35± 0.63 68.25± 1.61 71.20± 1.77 76.92± 0.92 76.16± 0.97 74.57± 1.18
SwAV 79.59± 0.11 66.22± 1.50 77.54± 1.56 77.92± 0.28 76.09± 1.32 75.47± 0.95
IRM 24.97± 8.49 34.81± 6.97 41.44± 19.62 19.98± 27.76 51.89± 5.31 34.62± 13.63

DeepCORAL 78.71± 0.92 65.80± 1.07 68.39± 0.46 75.06± 2.08 73.36± 0.87 72.26± 1.08
MSCL 78.74± 0.37 64.03± 1.69 76.50± 0.45 74.30± 0.78 73.84± 1.73 73.48± 1.00
PDA 43.81± 0.00 51.35± 9.20 39.87± 9.72 32.06± 0.00 36.76± 0.50 40.77± 3.88

EAGLE 80.39 ± 0.66 66.17± 0.60 72.53± 1.65 78.88± 0.21 76.16± 0.64 74.83± 0.75
TACIT 43.81± 0.00 42.91± 0.00 33.00± 0.00 32.06± 0.00 36.41± 0.00 37.64± 0.00

DomCLP 79.74± 0.75 68.98± 1.62 72.54± 0.43 75.20± 1.84 73.96± 0.43 74.08± 1.01
GenPromptCL (ours) 80.01± 0.04 73.02 ± 0.25 79.34 ± 0.06 79.56 ± 0.21 78.72 ± 0.14 78.18 ± 0.14

Table 2: The comparison experimental results on the PHEME dataset (%). We bold the best results. CH means the target domain
is CH, while FG, GW, OS, SS are the source domains (FG, GW, OS, SS→CH), and the other abbreviations follow this rule.

Note that: 1) the main diagonal of Yp consists of ones;
and 2) Yp is a symmetric matrix, meaning yijp = yjip . Since
each batch contains data from all source domains, we ar-
gue that data with the same label but from different domains
should have similar hidden states, and vice versa. To achieve
this, we first feed the sentence representation (the hidden
state of [CLS]) of the i-th data sample, denoted as hi

cls, into
a fully connected layer:

Oi = σ(WT
f h

i
cls + bf ), (9)

where σ(·) is the activation function; W f and bf are the
weights and biases of the fully connected layer, respectively.
Then, we compute the similarity between the i-th data and
the j-th data using the inner product (Lewis et al. 2020):

sij = Sigmoid(OT
i Oj), (10)

where Sigmoid(·) maps the values to the range (0, 1), with
a value close to 1 indicating high similarity between the i-th
and j-th data samples. Finally, we apply the cross-entropy
loss to keep similar data as close as possible and dissimilar
data as far away as possible:

Lpcl = − 1

b2

b∑
i=1

b∑
j=1

[
yijp log(sij) + (1− yijp ) log(1− sij)

]
.

(11)

Objective Function
After the data passes through the three modules, we obtain
three separate losses Lce, Ldm, and Lpcl. They are combined
into a total loss for joint learning, defined as:

L = λceLce + λdmLdm + λpclLpcl,

where λce, λdm, and λpcl are hyperparameters that balance
the contributions of each loss. However, selecting these hy-
perparameters can be costly and time-consuming.

To mitigate this, we adopt the Cov-Weighting loss (Groe-
nendijk et al. 2021), which dynamically adjusts the weights
based on the loss reduction rate. This method is parameter-
free, enabling the model to autonomously adjust the impor-
tance of each loss term at different training stages, leading to
more efficient and adaptive optimization. The final objective
function is:

L = COV ([Lce,Ldm,Lpcl]) , (12)

where COV(·) is the cov-weighting loss function.

Experiments
Datasets and Baseline Methods
We evaluate our model on three text classification tasks:
sentiment analysis (SA), rumor detection (RD), and natu-
ral language inference (NLI). Sentiment Analysis. We use
the Amazon reviews (Blitzer, Dredze, and Pereira 2007),
IMDB (Maas et al. 2011), and SST-2 (Socher et al. 2013)
datasets. The Amazon Reviews contains four domains:



Model GSTT’→F FSTT’→G FGTT’→S FGST’→T FGST→T’ Avg.
SimCSE 80.05± 0.51 84.26± 0.40 78.65± 0.14 80.05± 0.21 81.42± 0.48 80.89± 0.35
SwAV 80.67± 0.12 84.17± 0.21 78.49± 0.11 78.52± 1.11 81.20± 0.34 80.61± 0.38
IRM 28.82± 1.38 31.52± 0.51 31.49± 0.44 30.81± 0.90 31.34± 0.78 30.80± 0.80

DeepCORAL 20.26± 4.09 17.83± 0.00 20.88± 5.12 17.39± 0.00 17.38± 0.00 18.75± 1.84
MSCL 78.34± 0.04 82.28± 1.37 76.98± 0.33 78.58± 0.22 79.82± 0.57 79.20± 0.51
PDA 16.12± 0.00 29.96± 18.82 36.52± 29.42 36.41± 29.92 16.00± 0.00 27.00± 15.43

EAGLE 80.17± 0.20 84.61± 0.48 78.29± 0.39 79.50± 0.19 80.19± 0.37 80.55± 0.32
TACIT 78.57± 0.45 84.40± 0.60 76.62± 0.54 79.23± 0.25 79.66± 0.24 79.70± 0.42

DomCLP 78.72± 0.17 84.16± 0.46 78.27± 0.17 78.92± 0.35 80.74± 0.06 80.16± 0.24
GenPromptCL (ours) 81.15 ± 0.10 84.84 ± 0.02 79.75 ± 0.17 80.88 ± 0.07 82.07 ± 0.07 81.74 ± 0.09

Table 3: The comparison experimental results on the MNLI dataset (%). We bold the best results.

Model Amazon→IMDB Amazon→SST-2 MNLI→SICK MNLI→SNLI Avg.
SimCSE 90.96 ± 0.07 90.95± 0.56 64.13± 0.91 61.38± 0.33 76.86± 14.57
SwAV 90.76± 0.16 89.90± 0.52 63.56± 1.61 60.90± 0.50 76.28± 14.09
IRM 58.26± 6.31 65.88± 0.44 28.66± 1.14 19.18± 3.68 42.99± 19.55

DeepCORAL 85.82± 0.27 85.30± 2.10 24.17± 0.00 31.16± 0.00 56.61± 29.05
MSCL 90.82± 0.07 90.65± 0.71 65.40± 0.58 58.40± 0.86 76.32± 14.63
PDA 90.91± 0.02 90.78± 0.37 48.68± 17.66 13.54± 9.92 60.98± 32.35

EAGLE 90.51± 0.11 91.43± 0.64 66.86 ± 1.60 60.25± 0.03 77.26± 13.91
TACIT 90.45± 0.10 91.80± 0.14 60.05± 0.75 60.47± 0.96 75.69± 15.44

DomCLP 90.22± 0.14 91.85± 0.21 63.82± 2.96 60.19± 1.63 76.52± 14.58
GenPromptCL (ours) 90.77± 0.09 91.96 ± 0.09 66.56± 0.43 62.04 ± 0.26 77.83 ± 13.63

Table 4: The comparison experimental results on the IMDB, SST-2, SICK, and SNLI datasets. We bold the best values (%). RL
represents the representation learning methods; DG represents the domain generalization methods.

book (B), dvd (D), electronics (E), and kitchen (K). Ru-
mor Detection. We conduct experiments on the PHEME
dataset (Kochkina, Liakata, and Zubiaga 2018a).1 Follow-
ing MSCL (Tan et al. 2022), we use five domains: Char-
lieHebdo (CH), Ferguson (FG), GermanWings (GW), Ot-
tawaShooting (OS), and SydneySiege (SS). Nature Lan-
guage Inference. We adopt the MNLI (Wang et al. 2019a),
SICK (Marelli et al. 2014), and SNLI (Kochkina, Liakata,
and Zubiaga 2018b) datasets. For MNLI, following PDA (Jia
and Zhang 2022), we use five domains: fiction (F), govern-
ment (G), state (S), telephone (T), and travel (T’). We use the
shorthand “BDK→E” to denote using B, D, K as source do-
mains and E as the target, and apply this convention through-
out.

We compare GenPromptCL with SimCSE (Gao, Yao, and
Chen 2021), SwAV (Caron et al. 2020), MSCL (Tan et al.
2022), PDA (Jia and Zhang 2022), EAGLE (Bhattacharjee
et al. 2024), TACIT (Song et al. 2024), IRM (Arjovsky et al.
2020), DeepCORAL (Sun and Saenko 2016), and Dom-
CLP (Lee, Kim, and Lee 2025).

Implementation Details
We adopt RoBERTa base (Liu et al. 2019)2 as the backbone
for all models except IRM, which utilizes an MLP back-
bone. We set the maximum sequence length for the Amazon
reviews and SST-2 to 128, IMDB to 196, PHEME to 64,

1https://github.com/kochkinaelena/Multitask4Veracity
2https://huggingface.co/FacebookAI/roberta-base

and the maximum single sentence length in MNLI, SICK,
and SNLI to 48. We train the models on the source domains
for 30 epochs with a batch size of 16. We adopt AdamW
as the optimizer with a learning rate of 1e-5 and weight de-
cay of 1e-2. We set Oi ∈ R256, and all hyperparameters of
the other models strictly obey the values given in their pa-
pers. Meanwhile, we use macro-F1 as an evaluation metric.
In addition, each model undergoes 3 independent runs, and
we report the mean and standard deviation of the results3.
All experiments are implemented on a single NVIDIA V100
GPU.

Individual Dataset Results
Table 1, 2, and 3 show the experimental results for individ-
ual datasets. These results demonstrate that GenPromptCL
achieves the best performance across all three tasks. Specif-
ically, the proposed model outperforms the second-best
methods by: 0.19% on the Amazon dataset, 2.71% on the
PHEME dataset, and 0.85% on the MNLI dataset. From
these findings, we draw the following conclusions: 1) Un-
der the same settings, PDA experiences a significant per-
formance drop in the PHEME and the MNLI datasets, due
to the instability introduced by adversarial training. In con-
trast, GenPromptCL consistently performs well across all
datasets, demonstrating both stability and robustness. 2)
Methods such as DeepCORAL excel in single-sentence clas-
sification but struggle with multi-sentence tasks. This high-

3We reproduce all baseline models and report the results.



Model Runtime (↓) Param. (↓)
Amazon IMDB SST-2 Amazon IMDB SST-2

MSCL 51.74 (12.32 ↓) 190.03 (37.47 ↑) 68.33 (16.53 ↓) 124.84 (99.84 ↑) 124.84 (99.84 ↑) 124.84 (99.84 ↑)
PDA 65.26 (10.95 ↑) 129.70 (8.38 ↑) 91.13 (12.62 ↑) 1.77 (88.90 ↑) 3.55 (94.45 ↑) 3.55 (94.45 ↑)

EAGLE 83.87 (30.71 ↑) 171.98 (30.91 ↑) 116.23 (31.49 ↑) 2.00 (90.18 ↑) 3.78 (94.79 ↑) 3.78 (94.79 ↑)
TACIT 69.57 (16.47 ↑) 141.54 (16.05 ↑) 142.89 (44.28 ↑) 82.88 (99.76 ↑) 82.88 (99.76 ↑) 82.88 (99.76 ↑)

GenPromptCL 58.11 118.82 79.62 0.20 0.20 0.20

Table 5: The runtime within one epoch (s) and the number of additional parameters of domain generalization models (M). The
parentheses indicate how much the model improves or reduces compared to GemPromptCL (%) ((Tm − Tours)/Tm, Tm is the
runtime of the comparison model, Tours is the runtime of our model, and the same formula applies to the calculation of the
number of additional parameters). Param. indicates the number of additional parameters.

Module DEK→B BEK→D BDK→E BDE→K
GenPromptCL 91.67 90.18 92.27 94.03

w/o DMPL 91.13 89.53 91.68 93.48
w/o PCL 91.08 89.72 91.82 93.42
w/o both 91.08 89.45 91.83 93.47

Table 6: The ablation study on the Amazon dataset (%). We
bold the best values. w/o DMPL indicates ablation of the
DMPL module; w/o PCL represents ablation of the PCL
module; w/o both stands for ablation of the DMPL and PCL
components.

lights the ability of GenPromptCL to handle both single-
sentence and multi-sentence classification tasks effectively.
And 3) GenPromptCL exhibits low standard deviations
across all domains, with a maximum standard deviation of
only 0.25%, further underscoring its high stability and relia-
bility.

Cross Datasets Results
Table 4 shows the experimental results on the IMDB, SST-2,
SICK, and SNLI datasets. These results reveal the follow-
ing key observations: 1) GenPromptCL achieves the best
results (77.83%) on the IMDB and SST-2 datasets. 2) Al-
though GenPromptCL does not achieve the top results on the
IMDB and SICK datasets, it ranks as the second-best model.
And 3) GenPromptCL achieves the highest average macro-
F1 score across the four datasets, surpassing the second-best
model by 0.57%. From these findings, we can conclude:
1) Consistent with the results on individual datasets, Gen-
PromptCL exhibits remarkable stability across all datasets,
with a maximum standard deviation of only 0.43%. And 2)
The proposed method demonstrates superior stability and
robustness, delivering consistent and competitive results in
both single-sentence and multi-sentence classification tasks,
as well as across individual and multiple datasets.

Model Operation Efficiency Comparison
In this subsection, we evaluate the efficiency of domain gen-
eralization models by examining the runtime per epoch dur-
ing training and the number of additional parameters re-
quired beyond the backbone model. A detailed analysis of
the time and space complexity of GenPromptCL is provided
in Supplementary. To ensure fairness, only one model is run
on the machine at a time during the experiments. Since the

data volume is consistent across domains in the Amazon
dataset, we measure runtime and additional parameters on
a single domain from the Amazon dataset.

Table 5 presents the results of the efficiency experiments.
From these results, we can conclude: 1) Although Gen-
PromptCL is not always the fastest in terms of runtime
(12.32% and 16.53% slower than MSCL on Amazon and
SST-2, respectively), it significantly outperforms MSCL in
parameter efficiency, requiring only 0.2M additional param-
eters, compared to MSCL, which uses 99.84% more ad-
ditional parameters than our model. 2) Unlike adversar-
ial training-based models (e.g., PDA and EAGLE), Gen-
PromptCL does not incur a parameter increase as the num-
ber of domains grows. And 3) while models like MSCL
and TACIT maintain constant parameter counts regardless
of domain variations, their additional parameter counts are
99.84% and 99.76% higher than those of GenPromptCL, re-
spectively.

Ablation Study

The proposed method includes two components: DMPL
and PCL. To investigate the individual contributions of
these modules, we conduct ablation studies on the Ama-
zon dataset. Table 6 reports the experimental results. From
these results, we observe that both modules significantly
contribute to the overall performance improvement of the
model. This suggests that the DMPL module enables the
model to learn domain-invariant representations, while the
PCL module helps the model learn discriminative features.
These findings highlight the complementary roles of DMPL
and SCL in enhancing the model’s effectiveness.

Conclusion

In this paper, we propose a novel text domain generaliza-
tion method, GenPromptCL, designed to address the high
complexity of adversarial training and the challenges as-
sociated with data augmentation in NLP tasks. We con-
duct comprehensive experiments on three text classification
tasks, demonstrating that GenPromptCL outperforms exist-
ing methods in domain generalization. Additionally, effi-
ciency evaluations reveal that the proposed method effec-
tively reduces both time and space complexities, offering a
more efficient solution for domain generalization in NLP.



Acknowledgements
This work was supported by the National Natural Science
Foundation of China (62372315, 62306197), Sichuan Sci-
ence and Technology Planning Project (2025ZNSFSC1507,
2024YFG0007, 2024ZDZX0004, 2024NSFTD0049), Cen-
tral Government’s Guide to Local Science and Technol-
ogy Development Fund (2025ZYDF101), China Postdoc-
toral Science Foundation (2021TQ0223, 2022M712236),
Chengdu Science and Technology Project (2023-XT00-
00004-GX), Postdoctoral Joint Training Program of Sichuan
University (SCDXLHPY2307).

References
Arjovsky, M.; Bottou, L.; Gulrajani, I.; and Lopez-Paz, D.
2020. Invariant Risk Minimization. arXiv:1907.02893.
Bhattacharjee, A.; Kumarage, T.; Moraffah, R.; and Liu,
H. 2023. ConDA: Contrastive Domain Adaptation for AI-
generated Text Detection. In IJCNLP 2023, 598–610. Asso-
ciation for Computational Linguistics.
Bhattacharjee, A.; Moraffah, R.; Garland, J.; and Liu, H.
2024. EAGLE: A Domain Generalization Framework for
AI-generated Text Detection. arXiv:2403.15690.
Blitzer, J.; Dredze, M.; and Pereira, F. 2007. Biographies,
Bollywood, Boom-boxes and Blenders: Domain Adaptation
for Sentiment Classification. In ACL 2007. The Association
for Computational Linguistics.
Bose, S.; Jha, A.; Fini, E.; Singha, M.; Ricci, E.; and Baner-
jee, B. 2024. StyLIP: Multi-Scale Style-Conditioned Prompt
Learning for CLIP-based Domain Generalization. In WACV
2024, 5530–5540. IEEE.
Caron, M.; Misra, I.; Mairal, J.; Goyal, P.; Bojanowski, P.;
and Joulin, A. 2020. Unsupervised Learning of Visual Fea-
tures by Contrasting Cluster Assignments. In NeurIPS 2020.
Devlin, J.; Chang, M.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2019, 4171–4186. Association for Com-
putational Linguistics.
Ding, N.; Qin, Y.; Yang, G.; Wei, F.; Yang, Z.; Su, Y.; Hu,
S.; Chen, Y.; Chan, C.; Chen, W.; Yi, J.; Zhao, W.; Wang,
X.; Liu, Z.; Zheng, H.; Chen, J.; Liu, Y.; Tang, J.; Li, J.; and
Sun, M. 2022. Delta Tuning: A Comprehensive Study of Pa-
rameter Efficient Methods for Pre-trained Language Models.
CoRR, abs/2203.06904.
Fadaee, M.; Bisazza, A.; and Monz, C. 2017. Data Aug-
mentation for Low-Resource Neural Machine Translation.
In ACL 2017, 567–573. Association for Computational Lin-
guistics.
Gao, T.; Yao, X.; and Chen, D. 2021. SimCSE: Simple Con-
trastive Learning of Sentence Embeddings. In EMNLP 2021,
6894–6910. Association for Computational Linguistics.
Groenendijk, R.; Karaoglu, S.; Gevers, T.; and Mensink, T.
2021. Multi-Loss Weighting with Coefficient of Variations.
In WACV 2021, 1468–1477. IEEE.

Guo, X.; and Yu, H. 2022. On the Domain Adaptation and
Generalization of Pretrained Language Models: A Survey.
CoRR, abs/2211.03154.
Jia, C.; and Zhang, Y. 2022. Prompt-based Distribution
Alignment for Domain Generalization in Text Classification.
In Proceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2022, 10147–
10157. Association for Computational Linguistics.
Kobayashi, S. 2018. Contextual Augmentation: Data Aug-
mentation by Words with Paradigmatic Relations. In
NAACL-HLT 2018, 452–457. Association for Computa-
tional Linguistics.
Kochkina, E.; Liakata, M.; and Zubiaga, A. 2018a. All-in-
one: Multi-task Learning for Rumour Verification. In COL-
ING 2018, 3402–3413. Association for Computational Lin-
guistics.
Kochkina, E.; Liakata, M.; and Zubiaga, A. 2018b. All-in-
one: Multi-task Learning for Rumour Verification. In COL-
ING 2018, 3402–3413. Association for Computational Lin-
guistics.
Lee, J.; Kim, N.; and Lee, J. 2025. DomCLP: Domain-wise
Contrastive Learning with Prototype Mixup for Unsuper-
vised Domain Generalization. In AAAI 2025, 18119–18127.
AAAI Press.
Lei, T.; Hu, H.; Luo, Q.; Peng, D.; and Wang, X. 2022.
Adaptive Meta-learner via Gradient Similarity for Few-shot
Text Classification. In COLING 2022, 4873–4882. Interna-
tional Committee on Computational Linguistics.
Lewis, P. S. H.; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin,
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