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Abstract

Vision-Language Models (VLMs) excel at extracting salient
visual features from query images, thus exhibiting promis-
ing visual recognition performance. However, VLMs would
encounter significant degradation in fine-grained scenarios
due to their deficiency in distinguishing nuanced differences
among candidate categories. As a remedy, we draw inspira-
tion from the “System 1 & System 2 cognitive theory of
humans, paving the way to achieve fine-grained recognition
for VLMs. To be specific, we observe that VLMs naturally
align with System 1, quickly identifying candidate categories
but leaving easily-confused ones unresolved. Based on the
observation, we propose System-2 enhanCed visuAl recog-
Nition (SCAN), a novel plug-and-play approach that makes
VLMs aware of nuanced differences. In brief, SCAN first
specifies and abstracts the discriminative attributes for the
confused candidate categories and query images by resorting
to off-the-shelf large foundation models, respectively. After
that, SCAN adaptively integrates the salient visual features
from System 1 with the nuanced differences derived from
System 2, resolving confusion in candidates with estimated
uncertainty. Extensive experiments on eight widely used fine-
grained recognition benchmarks against 10 state-of-the-art
baselines verify the effectiveness and superiority of SCAN.
The code is available at https://github.com/XLearning-SCU/
2026-AAAI-SCAN

Introduction

Pre-trained on web-scale images with corresponding alt-
texts, Vision-Language Models (VLMs) (Radford et al.
2021; Zhai et al. 2023; Huang et al. 2024; Lin et al. 2024) ex-
hibit impressive visual recognition capability, achieving re-
markable performance on downstream tasks, including but
not limited to visual recognition (Liang and Davis 2025),
clustering (Li et al. 2024b), video reasoning (Lin et al.
2024), person re-identification (Lu et al. 2025), and image-
text retrieval (Ding et al. 2025). Despite their success, VLMs
would encounter heavy performance degradation once query
images deviate from the pre-training distribution (Xie et al.
2025; Du et al. 2025; Li et al. 2024a), particularly in fine-
grained scenarios where the category of query image might
never even emerge in the pre-training data (Yang et al. 2024).
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Figure 1: Our observation and key idea. (a) Observation:
While VLMs fail to distinguish easily-confused categories
(i.e., undesirable top-1 accuracy), they are capable of iden-
tifying a reasonable subset of candidate categories (i.e.,
promising top-20 accuracy), suggesting that VLMs could
function as System 1 of humans for visual recognition. (b)
Key Idea: Motivated by the observation, we aim to endow
VLMs with System-2 thinking to make them aware of the
nuanced differences among the above candidate subset. To
this end, we concretize and abstract the category names and
query image into discriminative attributes, which facilitates
the nuanced reasoning in two folds. On the one hand, con-
cretizing the category name into detailed attributes could
supplement VLMs with knowledge about rare categories.
On the other hand, abstracting the image into detailed at-
tributes not only avoids the interference of irrelevant infor-
mation but also bridges the granularity gap between image
and category.

To enhance the visual recognition capability of VLMs
in target distribution, numerous methods have been pro-
posed (Shu et al. 2022; Xiao et al. 2025; Zanella et al.
2025; Tian et al. 2024). Among them, learning-based ap-
proaches adapt VLMs into new scenarios by introducing ad-
ditional trainable modules (e.g., prompt tokens, adapters),



which are typically optimized by resorting to a few la-
beled images (Zhou et al. 2022) or self-supervised strate-
gies on unlabeled images (Shu et al. 2022). To eliminate the
training overhead, cache-based methods perform adaptation
by associating query images with class prototypes stored
in the cache, where each prototype is derived from pre-
collected relevant images annotated either manually or via
pseudo-labeling (Karmanov et al. 2024; Zhang et al. 2024).
Although achieving promising performance, their success
heavily relies on labeled or reference target data for model
tuning or cache construction, thus limiting their applicabil-
ity in recognizing fine-grained categories, where such data
and annotations are often scarce.

Different from most existing approaches that exhaustively
adapt VLMs on target distribution, humans tackle the com-
plex visual tasks through a dual-system framework, i.e., Sys-
tem 1 & System 2 (Li et al. 2025). In the case of fine-grained
visual recognition, System 1 conducts intuitive-driven judg-
ments based on salient visual features, rapidly identifying
possible categories while preserving easily-confused op-
tions. After that, System 2 engages in deliberate thinking
by analyzing nuanced differences among the candidate cate-
gories. Motivated by this, we aim to imitate the above cogni-
tive pattern of humans and make VLMs aware of the nuance
differences, thus enhancing fine-grained visual recognition
capability. As illustrated in Fig. 1, we observe that although
VLMs struggle in capturing nuances, they are still able to
identify a reasonable set of candidate categories. In other
words, VLMs can naturally serve as a counterpart to System
1. Therefore, our goal becomes endowing the current VLMs
with the System 2 thinking.

Based on the above discussions and observations, we pro-
pose a novel approach, termed System-2 enhanCed visuAl
recogNition (SCAN), to improve the recognition ability of
VLMs across diverse fine-grained scenarios. In brief, SCAN
consists of two core modules: the Nuance Reasoning (NR)
module to infer nuances among the candidate categories,
and the Uncertainty-aware Integration (UI) module to take
the best of System-1 identification and System-2 Thinking.
Specifically SCAN first employs the NR module to spec-
ify and abstract the discriminative attributes for the candi-
date categories and query images, respectively. As a result,
the information granularity of the image and the candidate
category could be aligned, and the nuanced differences be-
tween the query image and the candidate categories could
be naturally uncovered. After that, the Ul module estimates
the identification uncertainty in the candidate categories and
accordingly integrate the salient visual features from Sys-
tem 1 with the nuanced differences from System 2 in a dy-
namic mechanism. The main contributions and novelties of
this work could be summarized as follows:

* Inspired by cognitive science, we propose System-2 en-
hanCed visuAl recogNition (SCAN), a novel approach
for fine-grained recognition. To the best of our knowl-
edge, this work could be one of the first studies to en-
dow VLMs with System-2 thinking and thus make VLMs
aware of nuanced differences.

* Different from most existing VLM-enhanced studies that

require labeled or reference target data for adaptation, the
proposed SCAN imitates the cognition pattern of human
beings and could directly recognize the query image in a
zero-shot manner.

» Extensive experiments on eight fine-grained recognition
benchmarks verify the effectiveness and superiority of
SCAN. Furthermore, we exhibit the generalizability of
SCAN, demonstrating that it could serve as a plug-and-
play solution to enhance different VLMs.

Related Work

In this section, we briefly review three related topics for
VLM recognition capacity enhancement, i.e., learning-based
VLM enhancement, cache-based VLM enhancement, and
LLM-based VLM enhancement.

Learning-based VLM Enhancement

Learning-based VLM enhancement approaches usually in-
corporate additional trainable modules to enhance the adapt-
ability of VLMs. One of the most representative works is
prompt tuning, which replaces manually-crafted prompts
with learnable tokens and optimizes them using a small set
of labeled samples (Zhou et al. 2022; Qi et al. 2025). To
mitigate the need for labeled data, test-time prompt tun-
ing approaches have been proposed, where learnable prompt
tokens are updated based on prediction consistency across
test-time inputs (Shu et al. 2022). Another line of research
replaces learnable tokens with lightweight linear adapters,
which are similarly updated using a few labeled samples for
adaptation (Gao et al. 2024).

Despite the success of these learning-based approaches,
they still rely on labeled data or introduce additional training
overhead. In contrast, our method seeks to enhance VLMs
in a zero-shot setting, eliminating the need for extra super-
vision or training.

Cache-based VLM Enhancement

To alleviate training overhead, cache-based methods have
recently emerged as an efficient adaptation strategy for
VLMs. For example, Tip-Adapter(Zhang et al. 2022) con-
structs a key-value cache by storing features of a small num-
ber of labeled samples and performs category inference by
treating the test image as a query and retrieving the most rel-
evant information in the cache. To reduce the label depen-
dency for cache construction, TDA(Karmanov et al. 2024)
and DMN (Zhang et al. 2024) infer pseudo labels for the
reference samples, thus building and updating the cache in
an unsupervised manner.

While these approaches enable VLMs to generalize to
the target domain, their performance heavily relies on the
quality of the cached features, making them less effective in
data-scarce or noisy environments. In contrast, our approach
allows for fine-grained recognition on online query images
without requiring reference data from the target domain.

LLM-based VLM Enhancement

With the rapid advancement of large foundation models,
recent studies have explored integrating LLMs to enhance



s N\ \
\@,} System 1 for Candidate Identification Uncertainty-aware @ System 2 for Nuanced Reasoning
v Integration e TP
g | Step 1: Inference Distinctive Attributes
1
1
1 © Wing Pattern
* : » @ © Head Details
1 © Beak
Ny YL
b & . Candidate Set | Category Set LLM Attributes
Query Image (A) VLM e
L s e
Similarity Score Si ! Step 2: Concretization and Abstraction
H:simA, ®) - i [ <ot !
' ’ e; = diff(s1, 1) | i ] !
:Sim(A,'::,‘)# - i : \ i » @ » E
: Sim(A , ) ez =diff(si, 5) E :_._L_‘.____‘_l LMM Image Description_ !
5= diff(si, @) : :. » » & '
1 1
- : L= ! LLM Category Description:
e = diff (i , s ) LTI
! Step 3: Comparative Reasoning :
1
| (@2}
1
% ! 1
A : e (@ 0]
s j !
c ~a, 1 e ~o !
Nuanced difference ntegration : RC_TZ;L o { ) } !
____________________________________ 1
Easily Recognized @Ground Truth (2 Easily Confused . .
L Y g Y JAS System-2 enhanced Visual Recognition (SCAN) y

Figure 2: Overview of SCAN. SCAN consists of two key components: the Nuanced Reasoning (NR) module and the
Uncertainty-aware Integration (UI) module. In our method, VLMs play the role of System 1 to identify a reasonable set of
candidate categories. After that, SCAN first employs the NR module to infer a set of discriminative attributes via an off-the-
shelf LLM. Based on these attributes, both visual and textual modalities are aligned into a shared attribute space, transforming
the recognition task into semantic comparisons in the textual space. To this end, the NR module employs a pre-trained text
re-ranker model to assess the fine-grained distinctions. Finally, SCAN utilizes the Ul module to dynamically integrate the
recognition results from System 1 and System 2 based on the difference-based uncertainty estimation strategy.

VLMs by generating category-specific textual descriptions.
For example, DCLIP (Menon and Vondrick 2022) lever-
ages GPT-3 (Brown et al. 2020) to enrich category names
with attribute-level information, improving the expressive-
ness of textual prompts. HIE (Ren, Su, and Liu 2023) em-
ploys LLMs to generate discriminative descriptions across
hierarchical category names, which are then used for cat-
egory clustering and hierarchical reasoning. CuLP (Pratt
et al. 2023) replaces manually crafted prompts with LLM-
generated ones, making the method more applicable to real-
world zero-shot recognition scenarios. ProAPO (Qu et al.
2025) further scales the idea by generating large prompt sets
and adaptively optimizing them to identify the task-optimal
prompts.

In summary, most existing current LLM-based VLM En-
hancement works shared the same underlying insight, i.e.,
improve the richness and quality of the text prompt for
VLMs by leveraging external knowledge encoded in LLMs.
While sharing some technical similarities, our method sig-
nificantly differs from them in the following two main as-
pects. First, rather than simply enriching category descrip-
tions, our method performs both concretization and abstrac-
tion on the candidate categories and query images, thereby
aligning the information granularity of both. Second, our ap-
proach goes beyond enhancing text prompts by endowing
VLMs with System-2 thinking, enabling them to recognize
subtle differences among the easily-confused categories and

achieving significant improvements in fine-grained recogni-
tion performance.

Method

In this section, we present the proposed method, System-2
enhanCed visuAl recogNition (SCAN). We begin by using
CLIP (Radford et al. 2021) as a showcase to illustrate how
Vision-Language Models (VLMs) naturally function as Sys-
tem 1 in identifying candidate categories for fine-grained vi-
sual recognition. Then, we introduce the two key modules
of SCAN. In brief, as shown in Fig. 2, the Nuanced Reason-
ing (NR) module serves as System 2 to enhance System 1’s
awareness of the nuanced differences among candidate cate-
gories, while the Uncertainty-aware Integration (UI) module
could dynamically integrate both System 1 and System 2.

System-1 for Candidate Identification

VLMs, such as CLIP, typically employ a dual-encoder archi-
tecture comprising a vision encoder F, and a text encoder
E;, which embed visual and textual inputs into a shared rep-
resentation space. For a given image x and a set of categories
C = {ci1,¢2,...,cn}, the similarity between = and each
category ¢; is computed as follows:

s(x,¢;) = cos(Ey(z), E:(f(ci))), (1)
where f(-) converts the category name into the correspond-
ing textual prompt (e.g., “a photo of a [category name]”),



and cos(-) denotes the cosine similarity. Then, the category
with the highest similarity is selected as the prediction result
of VLMs.

While VLMs exhibit strong performance in general
recognition tasks, they often struggle in fine-grained scenar-
ios due to their limited ability to capture subtle visual dif-
ferences between similar categories (Xie et al. 2025). Fortu-
nately, as observed in Fig. 1, although VLMs fail to precisely
predict the correct category, they are still capable of filtering
out irrelevant categories and narrowing C' into a reasonable
subset C* with k candidate categories. Formally,

C* = Topk(C), 2)

where Topy(+) returns the top k categories ranked by simi-
larity scores s(z, ¢;), Ve; € C.

As discussed in the Introduction, the above candi-
date identification process of VLMs could be regarded as
System-1 thinking from the perspective of cognitive the-
ory (Li et al. 2025). However, System 1 lacks the capacity
for nuanced reasoning within the candidate subset C"*, pro-
hibiting it from accurate fine-grained recognition. As a rem-
edy, we propose SCAN, a System-2-inspired framework to
enhance VLMs with nuanced reasoning capabilities. In the
following, we will elaborate on the modules of SCAN.

Nuanced Reasoning

The Nuanced Reasoning (NR) module of SCAN plays the
role of System 2, performing comprehensive and detailed
comparisons and reasoning based on key differentiating at-
tributes of the candidate subset C*. In the following, we will
detail the three key steps of the NR module.
Discriminative Attributes Inference. To make VLMs
aware of nuanced differences among C*, it is essential to
first identify a set of discriminative attributes that could
characterize the fine-grained differences. To this end, we
leverage the off-the-shelf Large Language Model (LLM)
to automatically derive a set of discriminative attributes
A ={ay,as, - ,a,} from the category names. Notably, to
avoid the redundant attribute inference for the candidate cat-
egories of each individual query image, we prompt the LLM
to infer attributes for all categories in C' at once. Formally,

A = LLM(C, prompt 4 ), 3)

where prompt , denotes the system prompt for attribute in-
ference.

After inferring the attributes, one might simply use these
attributes as prompts to enhance the recognition capabil-
ity, like existing LLM-based studies for VLM enhance-
ment (Menon and Vondrick 2022; Qu et al. 2025). How-
ever, such a straightforward approach yields only limited
improvement, as verified in Fig. 1, which could stem from
the difference in granularity between the visual and textual
modalities. Specifically, images are rich in low-level visual
details, whereas category names are abstract and often un-
derspecified. To bridge this gap, we propose a concretization
and abstraction mechanism that aligns the semantic granu-
larity of both modalities at the attribute level. Formally,

* Concretization: Based on the discriminative attribute set
A, we leverage an LLM to expand each category name c;

into an attribute-aligned category description d., based
on the intrinsic knowledge of LLM. Formally,

d., = LLM(c;, prompt,, A), ()

where ¢; € C* and prompt, denotes the system prompt
used in the concretization process.

* Abstraction: Similar to Eq. 4, we leverage a Large Mul-
timodal Model (LMM) to abstract the query image x into
an attribute-level textual description, i,e,

d, = LMM(x, prompt,, A), (5)

where prompt prompt,, is the system prompt designed to
instruct the model to extract visual cues corresponding to
A, thus facilitating the elimination of irrelevant informa-
tion (e.g., background elements in the image).

Clearly, by aligning the query image and category names
in a shared attribute space, this approach supports more in-
terpretable and fine-grained difference reasoning. Due to the
space limitation, the details of the aforementioned prompts
would be presented in the supplementary materials.

Comparative Reasoning. Thanks to the above abstrac-
tion and concretization mechanism, the recognition task now
could be transformed into the semantic difference compar-
ison between d., and d,. To this end, we resort to the off-
the-shelf textual reranker model, which evaluates the rele-
vance between d., and d;, Vc¢; € C*, and outputs the cor-
responding similarity score p(z,¢;). In brief, p(z,¢;) re-
flects the matching degree between the image description
and each candidate category description, based on attribute-
level comparisons in the textual space.

Uncertainty-aware Integration

Given the similarity scores s(x, ¢;) and p(z, ¢;) from VLMs
and the NR module, respectively, the final recognition re-
sults could be obtained by combining the effects of both as
follows:

¢ =argmax (o - s(x,¢;) + (1 — ) - p(x,¢;)),  (6)
c,eC*

where « is a coefficient to balance the contributions of
VLMs and the NR module. Instead of simply fixing « as a
constant, it is more desirable to adaptively adjust it accord-
ing to the identification uncertainty of VLMs among C*. In
other words, VLMs is expected to contribute less when C*
contains highly-similar categories and yields very close sim-
ilarity scores s(z, ¢;) for ¢; € C*, exhibiting relatively high
uncertainty of VLMs, and vice versa.

To this end, we propose a novel uncertainty estima-
tion strategy tailored for fine-grained recognition, enabling
SCAN to dynamically balance the contributions of System 1
and System 2. To be specific, we utilize the similarity score
differences among the candidate categories as evidence for
VLMs’ identification. To unify the measurement of such ev-
idence, we take the top —1 similarity score as the reference
and compute the relative difference with the remaining can-
didates as follows:

diff; = sp, — sy, 4 =1,2,...,k, 7



Method ( Ai‘eﬁllf‘lgLsR) Flower CUB  Food Pet Aircraft  Car Dog SUN | Average A
CLIP ResNet-50 Backbone
CLIP v 61.20 46.00 7859 83.62 15.75 5395 52.19 58.49 56.22 -
CLIPpE VY 66.06 46.50 80.84 85.80 17.13 5445 53.66 59.92 58.04 +1.82
CoOp (IICV’22) X v X 61.55 48.60 7559 87.00 15.12 55.32 5840 58.15 57.46 +1.24
TPT (NeurIPS’22) V'V X 62.69 50.00 74.88 84.49 17.58 5846 5548 61.46 58.13 +1.90
Tip-Adapter (ECCV’22) XXV 73.00 4824 7741 86.15 18.57 57.62 56.72 61.19 59.86 +3.63
DCLIP (ICLR’23) Vv 65.68 49.13 79.65 83.10 16.92 53.86 5494 61.04 58.04 +1.81
TDA (CVPR’24) VXV 68.74 5022 7775 86.18 17.61 57.78 5631 6253 59.64 +3.41
DMN (CVPR’24) VXV 67.93 4875 76.70 86.78 22.77 60.02 - 64.39 61.04 +4.82
BCA (CVPR’25) VXV 66.30 - 77.19 85.58 19.89 58.13 - 63.38 61.74 +5.52
ProAPO (CVPR’25) X V'V 75.10 50.70 81.80 88.70 21.10 58.00 - 63.70 62.72 +6.50
CLIP+SCAN VY 7757 6441 86.76 89.94 38.49 7737 68.81 72.06 71.92 +15.70
CLIPpr+SCAN 4 79.29 6492 8742 91.06 40.11 7797 7094 7240 73.01 +16.79
CLIP ViT-B/16 Backbone

CLIP VY 67.70 5497 8823 88.20 23.91 63.72  60.55 62.71 63.74 -
CLIPpE 4 7134 5537 88.72 89.13 24.24 64.68 62.81 65.21 65.18 +1.44
CoOp (IICV’22) X v X 68.71 52.10 8530 89.14 18.47 64.51 6450 64.15 63.36 -0.38
TPT (NeurIPS’22) V'V X 68.98 56.75 84.67 87.79 24.78 66.87 62.28 65.50 64.70 +0.95
Tip-Adapter (ECCV’22) XX v 83.23 5775 86.10 89.10 27.66 6691 6536 65.68 67.72 +3.97
DCLIP (ICLR’23) VY 70.62 5775 88.50 86.92 24.96 63.25 63.47 66.85 65.29 +1.54
TDA (CVPR’24) VXV 7142 5759 86.14 88.63 23.91 67.28 6585 67.62 66.05 +2.30
DMN (CVPR’24) VXV 7449 56771 85.08 92.04  30.03 67.96 - 70.18 68.07 +4.32
BCA (CVPR’25) VXV 73.12 - 85.97 90.43 28.59 66.86 - 68.41 68.89 +5.14
ProAPO (CVPR’25) X V'V 83.67 58.89 89.14 92.39 27.39 67.31 - 67.34 69.44 +5.69
CLIP+SCAN VY 7988 66.70 89.46 89.88 44.01 79.21 7199 73.08 74.27 +10.53
CLIPp+SCAN VY 80.89  66.20 89.69 91.06 45.15 7949 73.65 73.61 74.96 +11.22

Table 1: Comparisons with state-of-the-art methods on 8 fine-grained datasets regarding the top-1 accuracy. The best and
second best results are marked in bold and underline. Here, AF, RF, LR denote annotation-free, reference-free, learning-free
methods, respectively. The experimental results of the compared methods are obtained either from their respective papers or

reproduced based on their publicly available code.

where hq, - - - , hi denote the indices of top —k categories in
C* sorted by descending similarity, i.e., Sp, > Sp, > -+ >
Sh ke

As discussed above, diff; could serve as a proxy for the
VLM'’s evidence in distinguishing candidate categories. Fol-
lowing prior work on evidential deep learning in general vi-
sual recognition (Sensoy, Kaplan, and Kandemir 2018; Han
et al. 2022; Du et al. 2023), we transform the above evidence
values into the parameters of a Dirichlet distribution and de-
rive the uncertainty as:

k

k
Uncertainty (C*) = e Zk (diff, - 7 + 1)’
g=1\"

®)

where 7 is a temperature parameter controlling the sensitiv-
ity to similarity differences and S is the total evidence im-
plying the uncertainty. As illustrated by Fig. 4, compared to
vanilla uncertainty modeling methods (Ma et al. 2025), our
nuance-aware design leads to a more precise characteriza-
tion of uncertainty in fine-grained scenarios.

Finally, the integration coefficient o in Eq. 6 could be ob-
tained based on the estimated uncertainty, i.e.,

a = 1 — Uncertainty (C™). ©)

Experiments

In this section, we verify the effectiveness of SCAN through
extensive experiments. We begin by presenting the imple-
mentation details of SCAN. Then, we validate the perfor-
mance superiority of SCAN by conducting extensive ex-
periments on 8 fine-grained recognition datasets, comparing
with 10 state-of-the-art methods. Moreover, we conduct a
series of ablation studies and analysis studies to provide a
comprehensive understanding of SCAN. Due to the space
limitation, we present more experimental details and results
in the supplementary materials.

Implementation Details

Unless otherwise stated, we utilize GPT-4.1-mini (Achiam
et al. 2023) as the default LLM for discriminative attributes
inference in Eq. 3 and category name concretization in Eq. 4.
In addition, we employ Qwen2.5-VL-32B (Bai et al. 2025)
to perform image abstraction in Eq. 5. For the comparative
reasoning step, we adopt Qwen3-Reranker-8B (Zhang et al.
2025) to assess the semantic similarity between image de-
scriptions and category descriptions. As for the number of
candidate categories, k is fixed as 20 across all experiments
for simplicity. The temperature parameter 7 in Eq. 8 is con-
sistently set to 40. All experiments are conducted on Ubuntu



20.04 with NVIDIA RTX 4090 GPUs.

Comparison with State-of-the-Art Methods

Datasets. We evaluate the proposed SCAN on eight widely-
used fine-grained image recognition datasets, covering
several domains (e.g., plants, animals, scenes, vehicles).
To be specific, the datasets include Flowers102 (Nils-
back and Zisserman 2008), CUB200 (Wah et al. 2011),
Food101 (Bossard, Guillaumin, and Van Gool 2014), Ox-
ford Pets (Parkhi et al. 2012), Aircraft (Maji et al. 2013),
Stanford Cars (Krause et al. 2013), Stanford Dogs (Khosla
etal. 2011), and SUN397 (Xiao et al. 2010).

Baseline Methods. We compare our SCAN against
10 state-of-the-art (SOTA) baselines, including the vanilla
CLIP model (Radford et al. 2021) with a hand-crafted
prompt (i.e., “a photo of a {category name}”) or with prompt
ensembling (denoted as CLIPpg), the training-based VLM-
enhanced methods (CoOp (Zhou et al. 2022), TPT (Shu
et al. 2022)), cache-based VLM-enhanced methods (Tip-
Adapter (Zhang et al. 2022), TDA (Karmanov et al. 2024),
DMN (Zhang et al. 2024), BCA (Zhou et al. 2025)), and
LLM-based VLM-enhanced methods (DCLIP (Menon and
Vondrick 2022), ProAPO (Qu et al. 2025)). All models
are evaluated on two widely adopted backbones: CLIP-
ResNet50 and CLIP-ViT-B/16.

Results. As shown in Table 1, our method consistently
achieves remarkable performance improvements in vari-
ous datasets. Specifically, SCAN achieves the absolute im-
provements of 15.70% and 10.53% for CLIP-ResNet50 and
CLIP-ViT-B/16 in terms of the average top-1 accuracy, re-
spectively. Moreover, our SCAN exhibits significant perfor-
mance superiority in a fully zero-shot setting, outperform-
ing other VLM-enhanced methods, which typically rely on
labeled or reference target data from the target domain or
require additional tuning for adaptation.

Ablation and Analytic studies

In this section, we conduct comprehensive ablation and
analytic studies to further investigate the effectiveness of
SCAN. If not specified, all experiments in the section are
conducted on the CUB and Dog datasets using CLIP p g with
ViT-B/16.

Method CUB Dog Average
(System 1) CLIPp g 5537 6281 59.09
(System 1) CLIPpg + NR-C 50.03 58.66 54.34
(System 2) NR 50.79  63.46 57.12

(System 1 +2) CLIPpg + NR  65.99  73.08 69.53
(System 1 + 2 + UI) SCAN 66.20 73.65 69.92

Table 2: Ablation study. Here, “NR-C” denotes the con-
cretization operation in the Nuanced Reasoning module, and
the Default settings are marked in gray.

Ablation Studies. As shown in Table 2, to investigate the
importance of each component of SCAN, we design the fol-
lowing method variants and accordingly draw some conclu-
sions. To be specific: i) “(System 1) CLIPpg” refers to the

result of vanilla System 1; ii) “(System 1) CLIPpr + NR-
C” represents enhancing CLIP only with the concretization
operation (Eq. 4), where category names are expanded into
detailed descriptions and used as alternative textual prompts
for CLIP, similar to LLM-enhancement methods (Menon
and Vondrick 2022). The degraded results indicate that CLIP
is incapable of directly benefiting from the detailed cate-
gory descriptions. iii) “(System 2) NR” represents that using
the NR module only, i.e., performing comparative reasoning
over all category in C' instead of C*. The degraded results
highlight the importance of adopting System 1 as the basis.
iv) “(System 142) CLIPpg+NR” denotes capsulating Sys-
tems 1 and 2 in a vanilla way, i.e., setting o = 0.5 in Eq. 6.
The inferior results demonstrate that it is more desirable to
take the best of both System 1 and System 2 in an adaptive
manner.
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Figure 3: Sensitivity analysis of the hyper-parameter 7 in
Eq. 8.

Sensitivity of Temperature 7. In the Ul module of
SCAN, the similarity score differences used as evidence are
typically small in magnitude. As a remedy, we introduce a
temperature parameter 7 to scale the evidence. To investi-
gate the sensitivity of our method to 7, we investigate the
performance of SCAN by increasing 7 from 10 to 50 with
an interval of 10. From Fig. 3, one could observe that SCAN
performs stably with different choices of 7, which shows its
robustness to the parameter.

Effectiveness of the Difference-based Uncertainty Es-
timation. Besides the quantitative results in Table 2, we fur-
ther conduct qualitative analysis to investigate the effective-
ness of the difference-based uncertainty estimation strategy
introduced in the UI module. We first follow the vanilla
uncertainty modeling approach (Sensoy, Kaplan, and Kan-
demir 2018), which directly regards the vanilla similarity
scores s(x, ¢;) as evidence. As illustrated in Fig. 4(a), this
method results in highly overlapping uncertainty distribu-
tions for correct and incorrect predictions, making it less ef-
fective in fine-grained scenarios. To further analyze this is-
sue, we compute the average similarity score difference be-
tween the top-1 and other candidate categories for correctly
and incorrectly predicted samples. As shown in Fig. 4(b),
when VLMs are able to select the correct category based
on salient visual features, the similarity gap is significantly
larger than in failure cases where the model is confused.
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Motivated by this observation, we propose to use similarity
score differences as the evidence (i.e., Eq. 7) for uncertainty
estimation. As demonstrated in Fig. 4(c), the resulting prob-
ability density distributions show a much clearer separation
between correct and incorrect predictions compared to the
vanilla strategy, indicating the effectiveness of our dedicated
uncertainty estimation for fine-grained recognition.

Generalization of SCAN. As our SCAN is a general
framework that could ideally endow various VLMs with the
capacity of fine-grained recognition in a plug-and-play man-
ner, it is necessary to explore the effect beyond the CLIP
model families. To this end, we choose the recently pub-
lished strong VLMs, i.e., SigLIP (Zhai et al. 2023) with
another base model. Similar to the enhancement for CLIP,
we use SigLIP as System 1 in this experiment and adopt
our SCAN upon it. The results are summarized in Table 3,
where one could observe that SCAN boosts the average top-
1 accuracy across CUB and Dog by 4.80% (from 66.91%
to 71.71%), demonstrating that the effectiveness of SCAN
is architecture-agnostic. Due to space limitations, the com-
plete experimental results of SCAN on all eight datasets us-
ing SigLIP are provided in the supplementary material.

Method CUB Dog Average A
SigLIP 68.04 6578 6691 -
SigLIP + SCAN 71.28 72.14 71.71 +4.80

Table 3: Generalization investigation of SCAN on SigLIP.

Necessity of Test-time Robustness Enhancement. Re-
cent advances in large multimodal models (LMMs) have
significantly improved fine-grained visual understanding. To
rigorously evaluate the effectiveness of our SCAN, we con-
struct a balanced test subset by randomly sampling three
test images per category on the CUB and Dog datasets.
We compare SCAN against the two LMMs used in our ap-
proach, i.e., Qwen2.5-VL-32B (Bai et al. 2025) and GPT-
4.1-mini (Achiam et al. 2023), along with the widely-used
LLaVA-v1.6-34B (Liu et al. 2023) in the academic commu-
nity. As shown in Table 4, despite being trained on mas-

sive datasets across diverse domains, existing LMMs still
underperform on fine-grained recognition benchmarks. The
results highlight the fact that beyond designing stronger pre-
trained models, it is equally important to focus on enhanc-
ing their test-time robustness, especially in challenging, fine-
grained scenarios.

Method CUB Dog Average A
SCAN(Ours) 6633 7138  68.85 -
Qwen2.5-VL-32B  49.66 61.33 5549  -13.36
LLaVA-v1.6-34B  7.83  18.61 1322 -55.63

GPT-4.1-mini 54.66 63.05 5885  -10.00

Table 4: Comparison with state-of-the-art LMMs. The A
column reports the performance gap relative to SCAN.

Conclusion

In this work, we propose SCAN, a novel test-time scaling
framework inspired by cognitive science to endow VLMs
with the capacity to perform fine-grained visual recogni-
tion. By imitating the “System 1 & System 2” cognition
pattern of human beings, SCAN enhances VLMs with a
System-2 thinking process that allows for the awareness of
nuanced differences, resolving easily-confused categories in
fine-grained scenarios. Through extensive experiments on
eight widely-used fine-grained recognition benchmarks, we
verify that SCAN not only significantly improves the fine-
grained recognition performance of VLMs, but also offers
a plug-and-play solution that can be seamlessly integrated
into various VLM architectures. Moreover, even compared
to the LMMs pre-trained on numerous data, SCAN also ex-
hibits impressive performance superiority. The results high-
light the potential of SCAN as a test-time scaling method
that supplements pre-training, particularly in domains where
pre-training data cannot cover all fine-grained variations. In
the future, we plan to expand SCAN to other tasks such as
visual-text retrieval and language-guided grounding, hoping
to expand the boundaries of “System 1 & System 2” cogni-
tion framework into a wider range of applications.



Acknowledgments

This work was supported in part by NSFC under Grant
624B2099, 62176171, 62472295, U24B20174; in part by
the Fundamental Research Funds for the Central Universi-
ties under Grant CJ202303, CJ202403; in part by Sichuan
Science and Technology Planning Project under Grant
24NSFTDO0130; and in part by Baidu Scholarship.

References

Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, L;
Aleman, F. L.; Almeida, D.; Altenschmidt, J.; Altman, S.;
Anadkat, S.; et al. 2023. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.

Bai, S.; Chen, K.; Liu, X.; Wang, J.; Ge, W.; Song, S.; Dang,
K.; Wang, P.; Wang, S.; Tang, J.; Zhong, H.; Zhu, Y.; Yang,
M.; Li, Z.; Wan, J.; Wang, P.; Ding, W.; Fu, Z.; Xu, Y.; Ye,
J.; Zhang, X.; Xie, T.; Cheng, Z.; Zhang, H.; Yang, Z.; Xu,
H.; and Lin, J. 2025. Qwen2.5-VL Technical Report. arXiv
preprint arXiv:2502.13923.

Bossard, L.; Guillaumin, M.; and Van Gool, L. 2014.
Food-101-mining discriminative components with random
forests. In European conference on computer vision, 446—
461. Springer.

Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,
T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter,
C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.;
Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford,
A.; Sutskever, I.; and Amodei, D. 2020. Language Models
are Few-Shot Learners. arXiv:2005.14165.

Ding, G.; Lu, Y.; Hu, P;; Yang, M.; Lin, Y.; Peng, X; et al.
2025. Visual Abstraction: A Plug-and-Play Approach for
Text-Visual Retrieval. In ICML.

Du, S.; Fang, Z.; Lan, S.; Tan, Y.; Giinther, M.; Wang, S.;
and Guo, W. 2023. Bridging trustworthiness and open-world
learning: An exploratory neural approach for enhancing in-
terpretability, generalization, and robustness. In Proceedings
of the 31st ACM International Conference on Multimedia,
8719-8729.

Du, S.; Fang, Z.; Tan, Y.; Wang, C.; Wang, S.; and Guo, W.
2025. OpenViewer: Openness-Aware Multi-View Learning.
In Proceedings of the Thirty-Ninth AAAI Conference on Ar-
tificial Intelligence, 16389-16397.

Gao, P; Geng, S.; Zhang, R.; Ma, T.; Fang, R.; Zhang, Y.; Li,
H.; and Qiao, Y. 2024. Clip-adapter: Better vision-language
models with feature adapters. IJCV, 132(2): 581-595.

Han, Z.; Zhang, C.; Fu, H.; and Zhou, J. T. 2022. Trusted
multi-view classification with dynamic evidential fusion.
TPAMI, 45(2): 2551-2566.

Huang, Z.; Yang, M.; Xiao, X.; Hu, P.; and Peng, X. 2024.
Noise-robust vision-language pre-training with positive-
negative learning. TPAMI.

Karmanov, A.; Guan, D.; Lu, S.; El Saddik, A.; and Xing,
E. 2024. Efficient test-time adaptation of vision-language
models. In CVPR, 14162-14171.

Khosla, A.; Jayadevaprakash, N.; Yao, B.; and Li, F.-F. 2011.
Novel dataset for fine-grained image categorization: Stan-
ford dogs. In Computer Vision and Pattern Recognition
Workshop.

Krause, J.; Stark, M.; Deng, J.; and Fei-Fei, L. 2013. 3d ob-
ject representations for fine-grained categorization. In Pro-
ceedings of the IEEE international conference on computer
vision workshops, 554-561.

Li, H.; Hu, P; Zhang, Q.; Peng, X.; Liu, X.; and Yang, M.
2024a. Test-time Adaptation for Cross-modal Retrieval with
Query Shift. /CLR.

Li, X.; Pan, Y. P;; Sun, Y.; Sun, Q. S.; Tsang, . W.; and Ren,
Z.2024b. Fast unpaired multi-view clustering. In Proceed-
ings of the 33rd International Joint Conference on Artificial
Intelligence.

Li, Z.-Z.; Zhang, D.; Zhang, M.-L.; Zhang, J.; Liu, Z.; Yao,
Y.; Xu, H.; Zheng, J.; Wang, P-J.; Chen, X.; et al. 2025.
From system 1 to system 2: A survey of reasoning large lan-
guage models. arXiv preprint arXiv:2502.17419.

Liang, T.; and Davis, J. 2025. Making Better Mistakes in
CLIP-Based Zero-Shot Classification with Hierarchy-Aware
Language Prompts. arXiv preprint arXiv:2503.02248.

Lin, Y.; Zhang, J.; Huang, Z.; Liu, J.; Wen, Z.; and Peng,
X. 2024. Multi-granularity correspondence learning from
long-term noisy videos. ICLR.

Liu, H.; Li, C.; Wu, Q.; and Lee, Y. J. 2023. Visual instruc-
tion tuning. NeurIPS, 36: 34892-34916.

Lu, Y.; Yang, M.; Peng, D.; Hu, P;; Lin, Y.; and Peng,
X. 2025. LLaVA-RelD: Selective Multi-image Questioner

for Interactive Person Re-Identification. arXiv preprint
arXiv:2504.10174.

Ma, H.; Chen, J.; Zhou, J. T.; Wang, G.; and Zhang, C. 2025.
Estimating LLM Uncertainty with Evidence. arXiv preprint
arXiv:2502.00290.

Maji, S.; Rahtu, E.; Kannala, J.; Blaschko, M.; and Vedaldi,
A. 2013. Fine-grained visual classification of aircraft. arXiv
preprint arXiv:1306.5151.

Menon, S.; and Vondrick, C. 2022. Visual classification
via description from large language models. arXiv preprint
arXiv:2210.07183.

Nilsback, M.-E.; and Zisserman, A. 2008. Automated flower
classification over a large number of classes. In 2008 Sixth
Indian conference on computer vision, graphics & image
processing, 722-729. x.

Parkhi, O. M.; Vedaldi, A.; Zisserman, A.; and Jawahar, C.
2012. Cats and dogs. In 2012 IEEE conference on computer
vision and pattern recognition, 3498-3505. IEEE.

Pratt, S.; Covert, I.; Liu, R.; and Farhadi, A. 2023. What
does a platypus look like? generating customized prompts
for zero-shot image classification. In ICCV, 15691-15701.
Qi, Z.; Pan, Y.; Meng, L.; Zhou, S.; Yu, H.; Li, X.; and Meng,
X. 2025. Global Prompt Refinement with Non-Interfering
Attention Masking for One-Shot Federated Learning. In The
Thirty-ninth Annual Conference on Neural Information Pro-
cessing Systems.



Qu, X.; Gou, G.; Zhuang, J.; Yu, J.; Song, K.; Wang, Q.; Li,
Y.; and Xiong, G. 2025. Proapo: Progressively automatic
prompt optimization for visual classification. In CVPR,
25145-25155.

Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
etal. 2021. Learning transferable visual models from natural
language supervision. In ICML, 8748-8763.

Ren, Z.; Su, Y.; and Liu, X. 2023. ChatGPT-powered hier-
archical comparisons for image classification. NeurIPS, 36:
69706-69718.

Sensoy, M.; Kaplan, L.; and Kandemir, M. 2018. Evi-
dential deep learning to quantify classification uncertainty.
NeurIPS, 31.

Shu, M.; Nie, W.; Huang, D.-A.; Yu, Z.; Goldstein, T.;
Anandkumar, A.; and Xiao, C. 2022. Test-time prompt tun-
ing for zero-shot generalization in vision-language models.
NeurIPS, 35: 14274-14289.

Tian, Y.; Yang, M.; Li, Y.; Liu, D.; Ren, X.; Peng, X.; and
Lv, J. 2024. An empirical study of parameter efficient fine-
tuning on vision-language pre-train model. In 2024 IEEE
International Conference on Multimedia and Expo (ICME),
1-6. IEEE.

Wah, C.; Branson, S.; Welinder, P.; Perona, P.; and Belongie,
S.2011. The caltech-ucsd birds-200-2011 dataset. Califor-
nia Institute of Technology.

Xiao, J.; Hays, J.; Ehinger, K. A.; Oliva, A.; and Torralba,
A. 2010. Sun database: Large-scale scene recognition from
abbey to zoo. In 2010 IEEE computer society conference on
computer vision and pattern recognition, 3485-3492. IEEE.

Xiao, Z.; Yan, S.; Hong, J.; Cai, J.; Jiang, X.; Hu, Y.; Shen,
J.; Wang, Q.; and Snoek, C. G. 2025. Dynaprompt: Dynamic
test-time prompt tuning. arXiv preprint arXiv:2501.16404.
Xie, S.; Lingjing, L.; Zheng, Y.; Yao, Y.; Tang, Z.; Xing,
E. P; Chen, G.; and Zhang, K. 2025. SmartCLIP: Modular
Vision-language Alignment with Identification Guarantees.
In CVPR, 29780-29790.

Yang, M.; Li, Y.; Zhang, C.; Hu, P,; and Peng, X. 2024.
Test-time adaptation against multi-modal reliability bias. In
ICLR.

Zanella, M.; Fuchs, C.; De Vleeschouwer, C.; and Ben Ayed,
I. 2025. Realistic test-time adaptation of vision-language
models. In CVPR, 25103-25112.

Zhai, X.; Mustafa, B.; Kolesnikov, A.; and Beyer, L. 2023.
Sigmoid loss for language image pre-training. In ICCV,
11975-11986.

Zhang, R.; Zhang, W.; Fang, R.; Gao, P.; Li, K.; Dai, J.;
Qiao, Y.; and Li, H. 2022. Tip-adapter: Training-free adap-
tion of clip for few-shot classification. In ECCV, 493-510.
Springer.

Zhang, Y.; Li, M.; Long, D.; Zhang, X.; Lin, H.; Yang, B.;
Xie, P.; Yang, A.; Liu, D.; Lin, J.; Huang, F.; and Zhou,
J. 2025. Qwen3 Embedding: Advancing Text Embedding
and Reranking Through Foundation Models. arXiv preprint
arXiv:2506.05176.

Zhang, Y.; Zhu, W.; Tang, H.; Ma, Z.; Zhou, K.; and Zhang,
L. 2024. Dual memory networks: A versatile adaptation ap-
proach for vision-language models. In CVPR, 28718-28728.
Zhou, K.; Yang, J.; Loy, C. C.; and Liu, Z. 2022. Learning
to prompt for vision-language models. IJCV, 130(9): 2337—
2348.

Zhou, L.; Ye, M.; Li, S.; Li, N.; Zhu, X.; Deng, L.; Liu, H.;
and Lei, Z. 2025. Bayesian test-time adaptation for vision-
language models. In CVPR, 29999-30009.



Supplementary Material for
Endowing Vision-Language Models with System 2 Thinking
for Fine-grained Visual Recognition

Yutong Yang', Lifu Huang?, Yijie Lin', Xi Peng'}, Mouxing Yang'*
!College of Computer Science, Sichuan University

2College of Computing & Data Science, Nanyang Technological University
3National Key Laboratory of Fundamental Algorithms and Models for Engineering Numerical Simulation, Sichuan University

1 Introduction

In this supplementary material, we provide implementation
details and additional experiments to validate the effective-
ness of SCAN.

2 Additional Implementation Details

In this section, we provide more details on the datasets and
the prompts used in the proposed SCAN.

2.1 Dataset Details

We evaluate the proposed method SCAN on eight widely
used fine-grained image recognition datasets, including Ox-
ford Flowers 102(Nilsback and Zisserman 2008), CUB-200-
2011(Wah et al. 2011), Food-101(Bossard, Guillaumin, and
Van Gool 2014), Oxford Pets(Parkhi et al. 2012), FGVC-
Aircraft(Maji et al. 2013), Stanford Dogs(Khosla et al.
2011), Stanford Cars(Krause et al. 2013), and SUN397(Xiao
et al. 2010). These datasets span a wide range of domains,
such as animals, plants, vehicles, and scenes, facilitating
a comprehensive evaluation of SCAN across diverse fine-
grained recognition scenarios. The statistics of the above
datasets are summarized in Table 1.

Dataset Type  Classes Test Size
Oxford Flowers 102 | flower 102 6149
CUB-200-2011 bird 200 5794
Food-101 food 101 25250
Oxford Pets pet 37 3669
FGVC Aircraft aircraft 100 3333
Stanford Dogs dog 120 8580
Stanford Cars car 196 8041
SUN397 scene 397 19850

Table 1: Overview of the datasets.

2.2 Details of the Prompts

In this section, we present the prompts employed in the Nu-
anced Reasoning (NR) module of SCAN.

*Corresponding author. Email: yangmouxing @ gmail.com
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Here are visually similar categories from the dataset:
{dataset name}. Your task is to identify 6 to 10 key
visual attributes that can effectively distinguish these
categories from each other.

For each attribute, ensure that it is:

- Discriminative across the categories,

- Visually observable in most images,

- Concrete and concise, avoiding vague or subjective
terms.

Here is the category list in the dataset: {category list}

Output Format:
-Attribute 1
-Attribute 2

-Attribute N

Table 2: Prompt for discriminative attributes inference.

Discriminative Attributes Inference. As discussed in
the Method section of the manuscript, to reduce the redun-
dant attribute inference for the candidate categories of each
query image, we prompt the Large Language Model (LLM)
to infer attributes for all categories at once. To be specific,
we design a prompt template that incorporates the category
information of the dataset, enabling the LLM to automati-
cally generate the corresponding discriminative attribute list.
The prompt is shown in Table 2.

Concretization. Given the inferred attribute list, the NR
module concretizes each category by prompting the LLM to
produce an attribute-aligned textual description. The tem-
plate of the prompt is shown in Table 3 and an example
prompt for the pink primrose category of the Flowers102
dataset is provided in Table 4.

Abstraction. In parallel with expanding the category
names, we also leverage an off-the-shelf Large Multimodal
Model (LMM) to abstract the key visual information from
each image, filtering out irrelevant background content. This
abstraction operation facilitates alignment between the im-
age and category within the shared attribute space. Table 5
presents the prompt template, and an example prompt based



Please summarize the most visually distinctive
features of the {class name} for fine-grained {dataset
type} recognition.

Important:

1. Focus strictly on visible traits that help distinguish
this {dataset type} from others.

2. Use short and precise phrases, not full sentences.
3. Avoid vague adjectives like “beautiful” or
“common”.

Follow this format exactly:
{class name}:
{attributes list}.

Table 3: Prompt for concretizing each category name.

Please summarize the most visually distinctive
features of the pink primrose for fine-grained flower
recognition.

Important:

1. Focus strictly on visible traits that help distinguish
this flower from others.

2. Use short and precise phrases, not full sentences.
3. Avoid vague adjectives like “beautiful” or
“common.”

Follow this format exactly:

pink primrose:

-Petal Shape:

-Petal Color and Pattern:

-Petal Number and Arrangement:
-Floral Center (stamens, pistil, disc):
-Leaf Shape and Arrangement:
-Inflorescence Structure:

Table 4: Example prompt for concretizing the pink prim-
rose category in Flowers 102 dataset.

on an image from the Flowers102 dataset is also provided in
Table 6.

3 Additional Experiments

In this section, we present additional experiments to further
demonstrate the effectiveness of SCAN.

3.1 Computation Cost

This section provides a detailed analysis of the compu-
tational overhead introduced by SCAN during inference.
First, we outline the inference pipeline of SCAN. Since
both discriminative attributes and category descriptions d,
are pre-generated offline, inference for a test image x in-
volves: (1) abstracting the image into a description d, us-
ing LMM; (2) computing matching scores between d,, and
each category description d., via a textual reranker model;
(3) dynamically integrating the recognition results from the
VLM and reranker model through the Uncertainty-aware

Please describe the {dataset type} in the image.
Ignore irrelevant background information. The goal is
to support fine-grained recognition based on visible
features of the {dataset type}. Only describe visible
and distinguishable features. Stick strictly to the
following format without adding or changing sections.

Important:

1. If a required feature is not clearly visible in the
image, simply write “uncertain”. Do not invent or
guess any detail that is not visible.

2. Follow the format exactly as shown below:
Description of the {dataset type}:

{attributes list}.

Table 5: Prompt for abstracting the image information.

Please describe the flower in the image. Ignore
irrelevant background information. The goal is to
support fine-grained recognition based on visible
features of the flower. Only describe visible and
distinguishable features. Stick strictly to the following
format without adding or changing sections.

Important:

1.If a required feature is not clearly visible in the
image, simply write “uncertain”. Do not invent or
guess any detail that is not visible.

2. Follow the format exactly as shown below:
Description of the Flower:

-Petal Shape:

-Petal Color and Pattern:

-Petal Number and Arrangement:

-Floral Center (stamens, pistil, disc):

-Leaf Shape and Arrangement:

-Inflorescence structure:

Table 6: Example Prompt for abstracting the image infor-
mation.

Integration(UI) module. The computational overhead dur-
ing inference primarily stems from the abstraction and text
rerank steps, while the remaining components involve only
lightweight CPU-level operations.

To quantify the inference-time overhead, we evaluated
SCAN on 500 samples from the Stanford Dogs dataset us-
ing RTX 4090 GPUs. As shown in Table 7, with a few addi-
tional costs per image, SCAN achieves a 16.62% improve-
ment in recognition accuracy over the CLIP-RN50 backbone
on the Stanford Dogs dataset, and achieves an average gain
of 15.7% across all evaluated datasets.

3.2 Category Identification Effects of VLMs on
More Datasets

In this section, we present a comprehensive evaluation of the
category identification performance of CLIP(Radford et al.
2021) and SigLIP(Zhai et al. 2023) across eight fine-grained



Process Concretization

Abstraction

Text Reranking  Total

Tlmeper image -

1.28s

1.71s 2.99s

Table 7: Computation time analysis on 500 samples from the Stanford Dogs dataset. Since the concretization step is performed
once prior to the inference process, it is excluded from the total inference time. The primary inference overhead for a query

image comes from the abstraction and text reranking steps.

Method Flower CUB Food Pet Aircraft Car Dog SUN Average A
SigLIP 83.61 68.04 91.69 91.93 37.17 90.59 6578 68.16  74.62 -
SigLIP + SCAN | 8598 71.28 90.33 92.75 46.38 91.51 7214 73.41 7797  +3.35

Table 8: Generalization results of applying SCAN to enhance the recognition performance of SigLIP across eight fine-grained
datasets. SCAN consistently improves the Top-1 accuracy with an average gain of 3.35% across all datasets, demonstrating its
effectiveness and strong generalization as a generic enhancement method for VLMs.

datasets. As shown in Fig. 1, due to their limited ability to
recognize nuanced differences, the Top-1 accuracy of VLMs
remains relatively low. Nevertheless, VLMs are still capa-
ble of identifying reasonable candidate categories based on
salient visual cues.

3.3 Detailed Results of Parameter Analysis

In this section, we further investigate the impact of the tem-
perature parameter 7 introduced in the Ul module. As shown
in Fig. 2, we vary 7 from 10 to 50 with an interval of 10. The
experimental results on different datasets exhibit only minor
fluctuations, demonstrating that SCAN maintains strong ro-
bustness across a wide range of temperature settings.

3.4 Detailed Results of Uncertainty Estimation

In this section, we present the extended analysis of the
proposed difference-based uncertainty estimation strategy
across all datasets. As shown in Fig. 3, the left column il-
lustrates the vanilla uncertainty modeling approach (Sensoy,
Kaplan, and Kandemir 2018), which directly treats simi-
larity scores as evidence for uncertainty. As observed, this
method results in highly overlapping uncertainty distribu-
tions between correctly and incorrectly predicted samples,
making it less effective in fine-grained recognition scenar-
ios.

To further investigate this issue, we compute the average
similarity score difference between the top-1 and other can-
didate categories for both correct and incorrect predictions.
The results shown in the middle column of Fig. 3 reveal that
when the VLMs correctly recognize an image by relying
on salient visual features, the similarity gap is significantly
larger compared to failure cases where the model is confused
between visually similar categories.

Motivated by this observation, we propose to use the dif-
ference in similarity scores as evidence for uncertainty esti-
mation. As demonstrated in the right column of Fig. 3, our
method yields probability density distributions with much
clearer separation between correct and incorrect predictions,
indicating its superiority over the vanilla strategy in fine-
grained settings.

3.5 Detailed Results of Generalization Analysis

In this section, we present additional experiments evaluat-
ing the effectiveness of SCAN in improving SigL.IP’s fine-
grained recognition performance. As shown in Table 8, al-
though SigLIP already achieve strong performance, integrat-
ing SCAN consistently enhances its Top-1 accuracy across a
wide range of fine-grained benchmarks. On average, SCAN
yields a 3.35% improvement, demonstrating its strong gen-
eralization capability as a VLM enhancement module.
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Figure 2: Recognition accuracy under different temperature values. Across all datasets, the proposed method maintains stable
performance over a wide range of temperature settings, indicating the robustness of our method.
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Figure 3: Comparison of uncertainty distributions generated by the vanilla (left) and our difference-based (right) strategies

across all datasets..
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Figure 3: Comparison of uncertainty distributions generated by the vanilla (left) and our difference-based (right) strategies
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