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Relationship Quantification of Image Degradations

Boyun Li

Abstract—In this paper, we study two challenging but less-
touched problems in image restoration, namely, i) how to quan-
tify the relationship between image degradations and ii) how to
improve the performance of a specific restoration task using the
quantified relationship. To tackle the first challenge, we propose
the Degradation Relationship Index (DRI), which is defined as the
mean drop rate difference in validation loss between two models,
where one trained solely with anchor degradation and the other
trained with both anchor and auxiliary degradations. By quantify-
ing degradation relationship using DRI, we reveal that i) a positive
DRI consistently indicates performance improvement when a ben-
eficial auxiliary degradation is incorporated during training; ii)
the proportion of auxiliary degradation is crucial to the anchor
task performance. In other words, performance improvement is
achieved only when the anchor and auxiliary degradations are
combined in an appropriate proportion. Based on these obser-
vations, we further propose a simple yet effective Degradation
Proportion Determination (DPD) method to estimate whether a
given degradation combinations can enhance performance on the
anchor restoration task with the assistance of auxiliary degrada-
tion. Extensive experimental results verify the effectiveness and
generalizability of our method on noise, rain streak, haze and snow.

Index Terms—Image restoration, relationship quantification,
image degradation.

1. INTRODUCTION

N THE real world, images are often contaminated by vari-
I ous degradations such as noise, rain, haze, and snow, thus
deteriorating the imaging quality and making difficulty for
downstream tasks. To obtain visually pleasant images, plentiful
works have been conducted and significant advancements have
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been achieved during past years [10], [17], [18], [25], [27], [37],
[41], [43], [44], [45], [46], [47], [48].

Although these methods perform well by designing models
tailored to specific degradation, they are less attractive to some
real-world scenarios such as autopilot, where handling multiple
degradations with a unified model is highly desirable. To develop
such an all-in-one model, several studies have been conducted
forimplicit [13], [36] or explicit restoration [2], [16] by introduc-
ing novel network architectures, objective function, or training
strategy. Although promising results have been achieved, these
works primarily focus on removing multiple degradations from
inputs, largely overlooking another important and promising
direction, i.e., Relationship Quantification of Image Degrada-
tions (RQID). Motivated by the observations that training with
multiple degradations results in performance improvements for
some degradations while deterioration for others [13], this paper
explores how to mathematically quantify such performance
variation. Specifically, the primary goal of RQID is to develop
a quantification tool that can reflect the positive or negative in-
fluence of given auxiliary degradation on the anchor restoration
task, thereby improving the performance on anchor task when
beneficial auxiliary degradations are introduced.

To achieve RQID, in this paper, we propose the Degradation
Relationship Index (DRI) to quantitatively answer how the per-
formance of a given anchor restoration task (e.g., dehazing) will
be influenced when another type of degraded images (e.g., noisy
images) is introduced into the training process. Specifically,
DRI is designed to quantify the relationship between the anchor
and auxiliary degradations. It is defined as the mean drop rate
difference in the validation loss between two models, where one
trained solely with the anchor degradation and the other trained
with both anchor and auxiliary degradations. As shown in Fig. 1,
a positive DRI consistently indicates performance improvement
on the anchor restoration task, a conclusion further supported
by subsequent analysis and experiments. Back to the figure,
compared to the baseline (triangles), the model with a positive
DRI (circles) converges faster and achieves better performance,
highlighting the positive influence of the auxiliary degradation.
In contrast, the model with a negative DRI (crosses) converges
slower and performs worse, reflecting the detrimental impact of
the given auxiliary degradation. Interestingly, the only difference
between the models represented by circles and crosses lies in
the proportion of the auxiliary degradation. This suggests that
the degradation combination, including both the degradation
type and proportion, plays a critical role in determining image
restoration performance. Specifically, the performance of the
anchor restoration task improves only when degradations are
combined in appropriate proportions. Based on this observation
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Fig. 1. Our observation and the effectiveness of DRI. As a baseline, the red

and green triangles illustrate the validation loss and PSNR of the model trained
on the anchor degradation (e.g., haze). Achieving better and worse restoration
performance respectively, the circles and crosses are the models trained with
both anchor and auxiliary degradations (e.g., noise), where the only difference
between them is the proportion of the auxiliary degradation (10% and 50% noise
for positive and negative degradations, respectively).

and leveraging DRI as a metric, we introduce Degradation Pro-
portion Determination (DPD), a simple yet effective method de-
signed to identify whether given degradation combinations can
enhance performance on the anchor restoration task. Notably,
DRI is significantly different from conventional task affinity
methods [6], [42] in two aspects. First, DRI is compatible with
all loss functions and network architectures, whereas most exist-
ing task affinity methods require specifically designed network
structures. Second, DRI demonstrates strong predictability on
indicating how auxiliary degradations influence anchor restora-
tion performance, while existing task affinity methods fail to
reliably anticipate such effects in image restoration tasks as
validated in Section I'V-D.

To summarize, the contributions and novelties of this study

are as below:

e To the best of our knowledge, this work might be one of
the first attempt to systematically explore and exploit the
relationship between different degradations.

e We introduce DRI, a predictable and flexible solution to
quantify the relationship between two given degradations,
specifically assessing how the performance of the anchor
restoration task will be influenced by introducing a auxil-
iary degradation into the training process.

e To address the lack of a benchmark for this emerging
topic, we construct a novel benchmark, dubbed RESIDE+.
By leveraging RESIDE+, RQID methods can be largely
immune to the influence of content discrepancy and con-
centrate on the degradations relationship. Extensive ex-
periments verify the effectiveness and generalizability of
proposed method.

II. RELATED WORK

This section will briefly review two related topics, namely, the
all-in-one restoration (multiple degradations restoration, MDR)
and image deweathering.
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A. Multiple Degradations Restoration

To handle multiple degradations commonly seen in the real-
world scenarios, a large number of MDR methods [2], [4], [13],
[16], [22], [36] have been proposed to handle different degrada-
tions with a single model. Although significant advancements
have been achieved, most efforts concentrate on designing novel
network architectures, objective functions or training strategies,
whereas they overlook the exploration and analysis of phenom-
ena concomitant with MDR, such as performance variations
induced by other degradations, i.e., RQID.

Different from the aforementioned studies on MDR, this
work does not attempt to develop a new image restoration
method. Instead, it aims to develop a RQID tool to study and
leverage the degradation relationship. It is worth noting that
although previous works [16], [28] introduce data augmenta-
tion methods using additional degradations to promote target
task performance, our work present two advantages. First, our
studies present a quantifiable paradigm to assess the influence
of auxiliary degradations, enabling us to systematically deter-
mine the optimal degradation without relying on exhaustive
trial-and-error experimentation. Second, our method eliminates
the need for costly synthesis procedures by directly replacing the
original images with versions containing auxiliary degradations.
This makes our method highly compatible with a wide range
of degradations, including complex ones like haze, which are
often expensive to generate in traditional data augmentation
pipelines. In summary, instead of proposing another ad-hoc
data augmentation method, our work establishes a paradigm to
bridge the gap between task-specific data augmentation and a
more fundamental understanding of degradation interactions.
By doing so, we reduce the reliance on extensive trial-and-error
experiments, leading to considerable savings in computational
resources and synthesis costs.

B. Image Deweathering

Image deweathering [13], [16], [26], [28], [34], [35], [36],
[49] aims to remove adverse weather (such as rain streak,
haze and snow) to produce visually appealing results for users.
Without loss of generality, we take image dehazing, deraining
and desnowing as examples to investigate the RQID. Image
dehazing aims to restore the scene radiance from the observed
hazy images [1], [5], [8], [11], [12], [14], [20], [21], [29], [33],
[40]. Recent researches devote to designing efficient network
architectures and task-specific loss functions to enhance model
performance. For instance, Dong et al. [5] exploited the multi-
scale information of hazy images by designing a pyramid-like
network. Guo et al. [8] propose a transformer-based network
that utilizes 3D position embedding of the observed hazy image
to achieve high-quality restoration. Wu et al. [40] proposed a
novel contrastive regularization as the loss term to leverage
connections among recovered images, hazy images and ground
truth. Similarly, image deraining [30], [31] and desnowing [3],
[23] aim to removal the effect of rain streak and snow from
the degraded images. Most of them are focusing on developing
task-specific network structure and loss function, and achieving
promising results.
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Instead of improving the restoration performance through
designing novel network structure or loss function, this study
shows another feasible but ignored way, i.e., introducing an
auxiliary restoration task to improve the generalization of mod-
els. The proposed RQID solution enjoys following two highly-
expected merits. On the one hand, it can be compatible to existing
network and criterion, thereby enjoying high generalizability
and flexibility. On the other hand, it is free from extra training
costs, embracing computational efficiency.

III. PROPOSED METHOD

In this section, we will first elaborate on three fundamental
design principles of RQID in Section III-A. Based on these prin-
ciples, we introduce the DRI to quantify the degradation relation-
ship in Section III-B. Next, Section III-C presents Degradation
Proportion Determination strategy (DPD) to estimate whether
given auxiliary degradations benefit the anchor degradation.
Finally, we detail the construction process of the RESIDE+
in Section III-D.

A. Principles of Quantifying Degradation Relationship

RQID is an emerging topic in low-level vision with many
aspects unexplored. To establish a robust and accurate quantifi-
cation of the relationship, we present two fundamental guiding
principles for method development: the asymmetric principle
and content-irrelevant principle.

Asymmetric principle: Different from the symmetric similar-
ity metrics, such as Euclidean distance and structure similarity,
the degradation relationship should be asymmetric since RQID
aims to measure the influence of the auxiliary degradation on the
anchor task. Clearly, such a goal is asymmetric. In other words,
a degradation combination is positive to the anchor restoration,
which might be negative to the auxiliary restoration.

Content irrelevant principle: Another designing principle to
RQID is content irrelevant, i.e., the RQID metric can avoid
distraction of image content and only reflect degradation rela-
tionship. However, it is daunting even impossible to fully follow
this principle in practice, since the degradations are coupled with
contents. As a remedy, we conduct experiments on images that
have the same image content but different degradation types.
Considering degradation is the only difference among them,
the quantification results could be regarded as approximately
irrelevant to the content.

B. Degradation Relationship Index

As aforementioned, DRI quantifies the relationship between
the anchor and the auxiliary degradations through the mean
drop rate difference D in validation loss between two models,
where one is trained solely on the anchor degradation and
the other is trained on both two degradations. To be specific,
for a given batch of training samples X2 = {X! X?} =
{o1,-- a}, a2, - 2%} withbatch size N. X*, X? and X2
denote samples with anchor degradation, auxiliary degradation,
and both of them, respectively. Supposing we adopt stochastic
gradient descent to update the model parameters ¢, the update
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process can be expressed as:
O = 0" = VLX), (M

where 7 denotes the learning rate and 93;5‘12 represents the

model parameters at step ¢ + 1, updated by X2, Given the
updated model 0?1,12, the validation loss with respect to valida-
tion samples X! can be computed as £(X}, 6%%%). Similarly,
let X! = {z1,--- 2} } denote the training batch only containing
the anchor degradation. The model parameters 9?51 is updated

by X! as follows:
ot =0 —pvL(xt, o). )

The corresponding validation loss with respect to X} is then
given by £(X 1, 0%1H).

v

Based on the definitions above, let D; denote the drop rate
difference at time step ¢, it can be expressed as:

D, =X, X1 t) —dat? Xt

L(X1,00 ’

v

where ®(X1, X! t) and (X2 X! t) are the drop rates of
validation loss for the two corresponding models.

To mitigate the volatility of the Drop Rate Difference (DRD),
DRI is defined as the average of D,. By default, this average is
computed over the entire training process, expressed as

D=13"D, )

where T is the total number of training steps. Alternative
sampling strategies for computing the average can be referred
in the experimental part. According to the definition of DRI,
a positive D indicates that the model trained with auxiliary
degradation results in a higher drop rate compared to the one
trained solely with the anchor degradation. In other words, a
positive D suggests that the given degradation combination can
enhance performance on the anchor restoration task.

C. Degradation Proportion Determination

Based on the observations in Fig. 1, which demonstrate that
the proportion of auxiliary degradation influences the anchor
restoration task, we employ DRI to further analyze this re-
lationship. Specifically, we evaluate how the proportions of
auxiliary degradation influence performance. As a case study, we
utilize MSBDN [5], a representative image dehazing network,
to examine the effect of auxiliary degradations (noise) on the
anchor task (image dehazing). The proportions of auxiliary
degradation p is varied from 0.1 to 0.9in increments of 0.2.
From Table I, the following observations can be drawn: i) the
proportion of degradation combinations plays a critical role in
image restoration performance. Specifically, only certain pro-
portions, such as 10% noise, benefit the anchor restoration task,
while others deteriorate its performance; ii) DRI exhibits a strong
correlation with performance on the anchor task. In brief, a
positive DRI consistently indicates performance improvement
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TABLE I
PERFORMANCES ON IMAGE DEHAZING WITH DIFFERENT PROPORTIONS OF
AUXILIARY DEGRADATIONS (NOISE).

p ‘ DRI PSNR APSNR SSIM ASSU\/[
0% 0 33.84 - 0.9849 -
10% | 0.00090 33.96 0.12 0.9850  0.0001
30% | -0.00301  33.00 -0.84 0.9828  -0.0021
50% | -0.01222  32.81 -1.03 0.9827  -0.0022
70% | -0.02784  32.10 -1.74 0.9804  -0.0045
90% | -0.05140 30.96 -2.88 0.9764  -0.0085

Results in boldface indicate the setting with best performance.

Algorithm 1: Degradation Proportion Determination.

Require: A given dataset D, auxiliary degradation
proportion p, network parameter 6, batch size IV, maximal
training step 7.

fort =1toT do

Sample two mini-batches data X1, X2 from D

Mix X! and X? with proportion p and obtain X'*+2

Update the network parameter through (1) and 2 and get
gitl pttl

x1.2y Yyt

Calculate Dy through (3).

end for

Calculate DRI via D = + ZtT:1 D;.

if D > 0 then

Given degradation combination with proportion p, it would
improve the performance on anchor restoration task.

else

Given degradation combination with proportion p, it would
damage the performance on anchor restoration task.

end if

on anchor tasks, whereas a negative DRI suggests a decline in
performance.

Based on these observations, we propose the Degradation
Proportion Determination (DPD) strategy to optimize the per-
formance of the anchor restoration task by identifying an ap-
propriate auxiliary degradation proportion that ensures a posi-
tive DRI. The implementation details of DPD are summarized
in Algorithm 1. DPD offers the following advantages. First, it is
a time-saving strategy for estimating and determining whether
a given proportion can enhance performance on the anchor
restoration task. By reducing the sampling interval of DRI, the
DPD could achieve 3.33x speedup, resulting in high computa-
tional efficiency. Second, DPD exhibits strong interpretability,
making its results explainable and reliable.

D. Benchmark

To mitigate the content discrepancy, benchmarks consisting
of clean images paired with multiple degraded versions are
highly desirable. Since no existing datasets fulfill these require-
ments, we extend the well-known image dehazing dataset, RE-
SIDE [15], by synthesizing multiple degraded versions from its
clean images for evaluation purposes. The resulting benchmark,
termed RESIDE+, comprises 10,931 clean images along with
their corresponding rainy, hazy and snowy versions. Detailed
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information about dataset construction and the synthesis process
are provided in the supplementary materials.

IV. EXPERIMENTS

In this section, we aim to answer following questions: i) Can
DRI predict performance changes across different anchor degra-
dations? ii) Can conclusions derived from DRI be generalized
across distinct backbones? iii) Can other task affinity meth-
ods effectively capture degradation relationships? To address
these questions, we conduct a series of experiments to evaluate
DRI’s predictability across different degradation combinations,
its robustness across different models, and the effectiveness of
alternative task affinity approaches. Additionally, We include
analysis experiments to further evaluate the impact of various
factors on the performance of the proposed method.

A. Experimental Settings

In this section, we introduce the details of the dataset, base-
lines, evaluation metrics, and training details.

Dataset: In addition to aforementioned RESIDE+, we also
evaluate our method on three additional real-world degraded
datasets, including SPA [38] for deraining, Foggy Driving
Dataset (FDD) [32] for dehazing, and Snowl00K [23] for
desnowing. Specifically, SPA consists of 1,000 real-world rainy
images, FDD contains 101 hazy driving scene images, and
Snow100 K includes 1,329 real-degraded snowy images col-
lected from the Internet. Following [18], [45], we generate noisy
images by adding white Gaussian noise to clean images with
o = 15.

Baselines: We take experiments on seven representative
dehazing methods, including AOD-Net [14], GDN [21],
FFANet [29], GCANet [1], MSBDN [5], AECR-Net [40] and
Dehamer [8], to validate the generalizability of DRI.

Evaluation Metrics: Following [8], [14], [40], we adopt
the Peak Signal-to-Noise Ratio (PSNR) [9] and the Structural
SIMilarity (SSIM) [39] to measure image quality with the
help of ground truth. Besides, two well-known No-Reference
Image Quality Assessments (NRIQA), i.e., SSEQ [19] and
NRQM [24], are adopted to evaluate the generalizability on
real-degraded images. Pearson correlation coefficient (Pearson’s
coefficient) is adopted to measure linear correlation between
DRI and final performance. Higher value of PSNR, SSIM,
NRQM and Pearson’s coefficient indicate better performance
of methods, whereas lower SSEQ value represents better per-
formance.

Training details: We conduct experiments in PyTorch on
NVIDIA GeForce RTX 3090 GPUs. For fair comparisons, we
use the officially released codes to train the networks if they
are publicly available. Except for partial training samples are
replaced by other degradations, all the experimental settings are
the same as the official settings.

B. Validation of DRI’s Predictability

To verify predictability of DRI, we retrain the MSBDN with
different degradation combinations on both synthetic and real
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TABLE II
QUANTITATIVE RESULTS OF DIFFERENT ANCHOR DEGRADATIONS ON THE SOTS+ DATASET.

Anchor Degradation | Metric | 10% Haze 10% Rain 10% Snow 10% Noise
DRI 0 0.00879 Tt  0.00865 11  0.00860 T
PSNR | 33.84 3476 MM 3450 1M 3396 1
Haze SSIM 0.9849 0.9857 111 0.9851 11 0.9850 1
NRQM | 825 828 1M 828 1 826 1
SSEQ 30.37 30.24 ™Mt 3032 1™ 30.71 )
DRI -0.04090 |4 0 -0.00167 | -0.00457 1}
PSNR 36.66 || 38.12 37.61 | 37.59 1
Rain SSIM 0.9587 ||| 0.9652 0.9635 || 0.9636 |
NRQM 853 8.58 856 | 856 |}
SSEQ 11.21 1 12.58 13.02 | 13.46 ||
DRI -0.12649 ||l -0.00234 | 0 0.00143 1
PSNR 36.52 |l 36.80 | 36.81 36.84 1
Snow SSIM | 09768 Il 09781 1t 09778 09781 1
NRQM 850 Ll 853 | 8.53 855 T
SSEQ | 1367 |l 1349 | 13.06 1441 114
DRI | -0.04845 [/ -0.00097 || 0.00024 T 0
PSNR 3478 |l 3483 | 3489 1 34.85
Noise SSIM | 09457 1] 09462 || 09470 1  0.9468
NRQM 835 |l 839 | 840 | 8.41
SSEQ | 2345 ||| 2163 [l 2050 + 2082

A higher value of PSNR/SSIM/NRQM indicates better performance, while a lower value of SSEQ signifies better performance. 1
indicates the degree of performance improvement, while the | indicates the degree of performance decrement.
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(a) Anchor degradation: noise.
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(b) Anchor degradation: rain streak.

Fig. 2.
degradations.

datasets to evaluate the connections between DRI and final
performance.

1) Results on Synthetic Datasets: As shown in Table II, DRI
demonstrates high predictability on synthetic datasets, where a
positive DRI consistently indicates performance improvement
on anchor tasks, and vice versa. Additionally, we analyze the
behavior of DRD throughout the training process. As illustrated
in Fig. 2, DRD displays noticeable fluctuations during training.
For instance, as depicted in Fig. 2(a), even though the DRI for
snow remains positive, DRD still exhibits occasionally negative
values. These fluctuations highlight the inherent variability of
DRD during training, further validating the reasonability behind
DRI, which mitigates such variations by averaging DRD over
multiple steps to provide a more stable and reliable performance
metric.

2) Results on Real-Degraded Images: To verify the gen-
eralizability of DRI on real degradations, we conduct both
qualitative and quantitative experiments on three representative
real-degraded datasets, including SPA [38], FDD [32], and
Snow 100K [23]. As shown in Table III, DRI demonstrates
strong generalizability on real-degraded images, indicating that

Drop Rate Difference

Drop Rate Difference

0

20000 40000 60000 80000 100000
Step

0 20000 40000 60000 80000 100000

Step

(c) Anchor degradation: haze. (d) Anchor degradation: snow.

The DRD on four anchor degradations (i.e., noise, rain streak, haze, and snow) during the training stage. Different colors indicate different auxiliary

DRI calculated on the synthetic datasets can reliably predict
performance changes on the real-world images. For qualitative
analysis, as illustrated in Fig. 3, models trained solely on hazy
images produce artifacts on real hazy images, while models
trained with positive auxiliary degradations, such as noise, rain
streaks and snow, avoid such artifacts and generate clear and
visually appealing outputs. Similar conclusions can be derived
from Figs. 4, 5, where positive auxiliary degradations enhance
performance in real-world scenarios, whereas negative degrada-
tions adversely affect performance.

C. Validation of DRI’s Generalizability

Without loss of generality, we take haze as anchor degrada-
tion, noise, rain streak and snow as auxiliary degradations to
verify whether conclusions drawn from MSBDN can generalize
to other backbones. As shown in Table IV, improvements
have been achieved across different backbones by introduc-
ing the positive auxiliary degradations, demonstrating strong
generalizability on multiple backbones. Similar conclusions
can be drawn from the visual results presented in Figs. 6
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TABLE III
QUANTITATIVE RESULTS OF THE PROPOSED METHOD ON REAL-DEGRADED DATASETS.

Anchor Degradation | Metric | 10% Haze 10% Rain 10% Snow  10% Noise
DRI 0 0.00879 Tt  0.00865 11  0.00860 T

Haze NRQM |  7.13 717 M 716 M 714 1

SSEQ 19.01 1774 111 18.00 11 1979 |

DRI -0.04090 |4 0 -0.00167 | -0.00457 1}

Rain NRQM | 497 11 469 465 | 464 ||

SSEQ 4047 11T 45.40 4599 || 4582 |

DRI | 0.12649 [ -0.00234 1] 0 0.00143 1

Snow NRQM 8.06 |l 8.15 || 8.19 820 1

SSEQ | 2937 || 2945 ||l 2930 2928 1

A higher value of NRQM indicates better performance, while a lower value of SSEQ signifies better performance. 1 indicates the
degree of performance improvement, whereas the | indicates the degree of performance decrement. One could observe that DRI
exhibits strong predictability on real-degraded images, where a positive DRI indicates performance improvement, and vice versa.

TABLE IV
QUANTITATIVE RESULTS OF IMAGE DEHAZING ON SOTS DATASET, DEMONSTRATING THE GENERALIZABILITY OF DRI ACROSS DIFFERENT BACKBONES

Scenes Method | Original | 10% Noise | 10% Rain | 10% Snow
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
AOD-Net [11] 19.54  0.8244 | +0.19 +0.0099 | +0.45 +0.0133 | +0.28 +0.0066
GDN [21] 32.16  0.9836 | +0.14 +0.0007 | +0.71 +0.0020 | +0.51 +0.0007
FFANet [7Y] 36.39  0.9886 | +0.40 -0.0020 | +0.57 +0.0007 | +0.54  +0.0008
Indoor GCANet [!] 30.08  0.9601 +0.45 +0.0024 | +1.16 +0.0052 | +0.64  +0.0047
MSBDN [7] 3272 0.9806 | +1.76  +0.0031 | +2.42 +0.0052 | +1.81 +0.0052
AECR-Net [10] 37.17  0.9901 +0.11  +0.0000 | +0.02  +0.0001 +0.12  +0.0002
Dehamer [©] 36.63 0.9881 | +0.05 +0.0023 | +0.24 +0.0010 | +0.16  +0.0020
AOD-Net [ 1] 23.52 09183 | +0.16 +0.0010 | +0.65 +0.0037 | +0.47  +0.0020
GDN [21] 30.86  0.9819 | +0.24 +0.0004 | +0.43 +0.0016 | +0.32 +0.0013
FFANet [7Y] 33.38 0.9840 | +0.52  +0.0002 | +0.59 +0.0002 | +0.71  +0.0007
Outdoor GCANet [!] 26.08 0.9614 | +0.07 +0.0034 | +1.15 +0.0017 | +1.02 +0.0021
MSBDN [7] 33.84 0.9849 | +0.12 +0.0001 | +0.92 +0.0008 | +0.66  +0.0002
AECR-Net [10] | 33.52 09840 | +0.24 +0.0009 | +0.29 +0.0006 | +0.62 +0.0013
Dehamer [7] 35.18 0.9860 | +0.25 +0.0000 | +0.93 +0.0009 | +0.70  +0.0009

o
ST

Input Haze Noise Rain Snow
DRI 0 0.00860 0.00879 0.00865

Fig. 3. Illustration of generalizability of DRI on real-world hazy images [32].
One could observe that DRIs calculated on synthetic datasets align with the
performance changes on the real-world data, i.e., auxiliary degradations with
positive DRI enhance the performance on anchor restoration tasks, and avoid
the artifacts appeared in the baselines. Some areas are highlighted in rectangles
and zooming-in is recommended for better visualizations and comparisons.

and 7, where baselines trained with positive auxiliary degra-
dations show better visual results and align more closely with
the ground-truth, whereas original models often exhibit color
distortions.

Noise
-0.00457

Haze
-0.04090

Ram Snow

0.00167

Input
DRI

Fig. 4. Tllustration of generalizability of DRI on real-world rainy images [38].
One could observe that DRI calculated on the synthetic datasets can reflect the
performance changes on real-world datasets, i.e., auxiliary degradations with
negative DRI adversely affect the results, remain more rain streaks than base-
lines. Some areas are highlighted in rectangles and zooming-in is recommended
for better visualizations and comparisons.

D. Comparison With Task Affinity Methods

In this section, we take haze as the anchor degradation,
10% noise, 10% rain, and 10% snow as the auxiliary degra-
dation to make comparisons with two representative task
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Fig.5. Illustration of generalizability of DRI on real-world snowy images [23].
One could observe that DRI calculated on the synthetic datasets can reflect the
performance changes on real-world datasets, i.e., auxiliary degradations with
positive DRI results in clearer results, and vice versa. Some areas are highlighted
in rectangles and zooming-in is recommended for better visualizations and
comparisons.

TABLE V
THE DEGRADATION AFFINITY RESULTS OF DIFFERENT METRICS, INDICATING
THE EFFECTIVENESS AND PREDICTABILITY OF DRI

Settings | Original ~ 10% Noise ~ 10% Rain ~ 10% Snow
PSNR 33.84 33.96 34.76 34.50
SSIM 0.9849 0.9850 0.9857 0.9851

Taskonomy [”] - -1.00000 -0.00215 -0.000005

TAG [0] - -0.00189 -0.00060 -0.00142

DRI - 0.00860 0.00879 0.00865

affinity methods, i.e., Taskonomy [42] and TAG [6]. As shown
in Table V, our DRI demonstrates reliable predictability. Specif-
ically, taking 10% noise as examples, the Taskonomy and TAG
affinity are —1.00000 and —0.00189, respectively, which contra-
dict the final performance on the anchor degradation. In contrast,
the DRI is 0.00860, aligning with the observed performance
improvement.

E. Analysis Experiments

In this section, we conduct further investigations on DRI.
First, we compute DRI with different sampling steps to achieve
better balance between performance and computational effi-
ciency. Second, we calculate DRI with training loss to assess the
necessity of validation loss. Additionally, experiments involving
extra auxiliary degradations, proportions, degradation levels
and multiple auxiliary degradations are conducted for further
explorations. Finally, we present several intuitive explanations
on auxiliary degradations.

1) Ablation Study on Sampling Steps: Calculating DRI at
every iteration can be computationally expensive, making it
essential to identify a balance that reduces computational over-
head. Inspired by the results in Fig. 2, we observe that DRI
values in consecutive steps are similar. This suggests that DRI
can be computed at larger intervals rather than at every iteration,
thereby saving time. To investigate this, we calculate DRI every
1, 5, 10, 50, 100 iterations, and evaluate its correlation with the
final performance on anchor restoration tasks using Pearson’s
coefficient. Additionally, we also calculate DRI during the first,
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TABLE VI
QUANTITATIVE RESULTS ON DIFFERENT SAMPLING STEPS.

Method | Pearson’s Coefficient | Relative Speedup
Every 1 Step 0.9698 1.0x
Every 5 Steps 0.9721 1.93x
Every 10 Steps 0.9689 2.26x
Every 50 Steps 0.9586 2.45x

Every 100 Steps 0.9693 2.48x
First 30% Steps 0.9718 3.33%
Middle 30% Steps 0.9706 2.29%
Last 30% Steps 0.9674 1.73%

Speedup is relative to computing DRI in every 1 step. The best results on the
pearson coefficient and the speedup are shown in boldface.

TABLE VII
PERFORMANCES ON IMAGE DEHAZING WITH DIFFERENT PROPORTIONS OF
AUXILIARY TASK, 1.E., IMAGE DENOISING.

p | DRI PSNR  Apsyr SSIM  Agsim
0% 0 33.84 - 0.9849 -
1% | 0.00132  33.86 0.02 0.9848  -0.0001
3% | 0.00353 33.87 0.03 0.9851  0.0002
5% | 0.00551 33.89 0.05 0.9859  0.0010
7% | 0.00704  33.92 0.08 0.9853  0.0004
9% | 0.00815 33.93 0.09 0.9853  0.0004
10% | 0.00860 33.96 0.12 0.9850  0.0001

20% | 0.00726  33.93 0.09 0.9857  0.0008

Results in boldface indicate the setting with best performance.

middle, and last 30% training steps to verify its predictability. As
shown in Table VI, the results demonstrate that calculating DRI
with larger intervals can accurately predict final performance.
In other words, computing DRI over a limited subset of training
steps, such as the first 30% steps, can yield reliable results.

To further leverage above observations, we conduct time com-
parisons under following three settings. Namely, i) the traditional
method: separately training two models for 100 K iterations, and
comparing their results; ii) DPD-100 K: training a single model
for 100 K iterations using DPD and measuring its DRI; and iii)
DPD-30 K, training a single model for 30 K iterations using
DPD and measuring its DRI. As illustrated in the results, the
traditional method, DPD-100 K and DPD-30 K take 1726.20
mins, 1475.35 mins, and 492.03 mins, respectively. In other
words, DPD-100 K and DPD-30 K saving 14.53% and 71.50%
training time compared to the traditional method. These findings
demonstrate a novel approach that can effectively balance time
efficiency with performance, enabling DPD to achieve desired
results with a significantly less time, thus offering a distinct
advantage over traditional methods.

2) Ablation Study on Validation Loss: In this section, we
investigate the necessity of validation loss in DRI by replacing it
with training loss. As shown in Figs. 8 and 9, training loss fails
to reflect the influence of auxiliary degradation. Specifically, as
shown in Fig. 8, DRDs remain negative throughout the training
process for a positive auxiliary degradation, contradicting the
observations and results in Figs. Figs. 1, 10, and 11. Taking
proportion of 0.1 as another example, 10% noise leads to
performance improvement in Tables I and VII, while its DRI
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and comparisons. One could observe that models trained with positive auxiliary degradations show more visual pleasing results than baselines.

calculating by training loss is negative, highlighting the inade-
quacy of training loss. Similar conclusions could be derived from
Fig. 9 as well. From above findings, we can find out that models
trained without auxiliary degradations converge faster on the
training set, while those trained with both anchor and positive
auxiliary degradations achieve lower validation loss, indicating
that appropriate auxiliary degradation improve generalizability
of the model.

3) Results on Extra Auxiliary Degradations: We further ex-
amine the impact of masking, blurring, and color jitter on four
anchor degradations, i.e., haze, noise, rain, and snow. As shown
in Table VIII, following observations can be made: i) color jitter
adversely affects the anchor tasks. Although Gaussian blur and
masking exhibit marginal improvements in PSNR on some tasks
(such as dehazing), they generally degrade the performance
on most target restoration tasks. This phenomenon could be
attributed to the severe color and structural distortions caused
by these corruptions; ii) DRI demonstrates strong predictability
in terms of PSNR. Specifically, the positive DRI correlates
with PSNR improvements, while a negative DRI corresponds to
performance degradation, which is consistent with our claims.

4) Analysis on Proportions of Auxiliary Degradations: We
present additional results of extra auxiliary degradations’ pro-
portions and analyze the corresponding changes in DRD
throughout the training process. As illustrated in Fig. 10, fol-
lowing observations can be made: i) DRI demonstrates strong
predictability and can effectively reflect performance changes

TABLE VIII
RESULTS OF ADDITIONAL AUXILIARY DEGRADATIONS.

Anchor Color Gaussian

Degradation Metric | Original Jitter Blur Mask
DRI 0 -0.00281  0.00756 0.00448
Haze PSNR 33.84 33.61 33.89 33.86
SSIM 0.9849 0.9836 0.9849 0.9836
DRI 0 -0.03238  -0.00354  -0.06553
Rain PSNR 38.12 36.73 37.55 36.64
SSIM 0.9652 0.9583 0.9624 0.9568
DRI 0 -0.04629  0.00086  -0.03137
Snow PSNR 36.81 36.52 36.84 36.57
SSIM 0.9778 0.9769 0.9775 0.9764
DRI 0 -0.01970  -0.00002  -0.01362
Noise PSNR 34.85 34.79 34.85 34.81
SSIM 0.9468 0.9452 0.9465 0.9464

The default proportions of auxiliary degradations are 10%.

across different proportions; ii) 10% auxiliary degradation is
optimal, and thus, to reduce computational costs, we adopt this
proportion consistently in our experiments. Similar conclusions
could be derived from Fig. 11.

5) Results on Multiple Auxiliary Degradations: We conduct
additionally experiments on multiple auxiliary degradations in
the following four settings, including two auxiliary degrada-
tions separately added to different images (dubbed as Two
Degradation-Separate, 2D-S), two auxiliary degradations added
to the same image (dubbed as Two Degradation-Joint, 2D-J),
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and comparisons. One could observe that models trained with positive auxiliary degradations show more visual pleasing results than baselines.
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Fig. 8. DRD calculated on training loss during the training stage. Different
colors indicate different proportions of auxiliary degradations.

three auxiliary degradations separately added to different images
(dubbed as Three Degradation-Separate, 3D-S) and three aux-
iliary degradations added to the same image (dubbed as Three
Degradation-Joint, 3D-J). As shown in Table IX, following two
observations can be made. First, 2D-S and 3D-S achieved a
compromise result. Taking “Rain & Noise™ as the example, its
performance is superior to the one using noise only but inferior to
the one using rain only. This suggests that incorporating multiple
degradations into different images will make the performance

x1073

Drop Rate Difference

20000 30000 40000 50000

Step

0 10000

Fig. 9. DRD calculated on training loss with different degradation combi-
nations during the training stage. Different colors indicate different auxiliary
degradations.

compromised by the weaker auxiliary degradation. Second, 2D-J
and 3D-J achieve greater improvements compared to using sin-
gle degradation, highlighting the benefits of combining multiple
auxiliary degradations within the same image.

6) Results on Different Degradation Levels: To explore the
impact of degradation levels, we conduct additional experi-
ments by employing rain streaks as the anchor degradation and
Gaussian noise with distinct noise levels (o = 10, 15, 25, 50) as
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TABLE IX
QUANTITATIVE RESULTS ON MULTIPLE AUXILIARY DEGRADATIONS.
Metric Original Single Degradation 2D-S 3D-S 2D-J 3D-J
& Noise Rain Snow | Rain&Noise Rain&Snow Snow&Noise | Rain&Snow&Noise | Rain+Noise Rain+Snow Snow+Noise | Rain+Snow+Noise
DRI 0 0.00860 0.00879 0.00865 0.00849 0.00826 0.00819 0.00816 0.00973 0.00919 0.00909 0.01011
PSNR 33.84 3396 3476  34.50 34.31 34.22 34.06 34.01 35.29 34.84 34.80 35.32
SSIM 0.9849 0.9850 0.9857 0.9851 0.9852 0.9842 0.9853 0.9856 0.9869 0.9860 0.9865 0.9860
2D-S (3D-S) denotes two (three) auxiliary degradations are separately added to different images. 2D-J (3D-J) denotes two (three) auxiliary degradations are added to the same
image.
x1071
TABLE X
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Fig. 10. The DRD on different proportions (ranging from 0.1 to 0.9) of g ' ‘
auxiliary degradations, i.e., image denoising, during the training stages. As the

proportion increases, the DRD decreases simultaneously.
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Fig. 11. The DRD on different proportions (ranging from 0.01 to 0.2) of

auxiliary degradations during the training process. When the proportion is 0.1,
the DRD reaches its highest value.

auxiliary degradations. As shown in Table X, the DRI values
reveal a nearly negative correlation between noise level and de-
raining performance: higher noise level (such as o = 50) result
in more significant performance degradation compared to lower
noise level (such as 0 = 15). An exception is observed at o =
10, where the DRI (-0.00481) and PSNR (36.90) deviate from the
expected trend. Despite this discrepancy, DRI effectively reflects
the performance changes, suggesting a unique interaction at
this noise level and demonstrating that DRI can effectively
reflect the performance changes across different degradation
levels.

Area of
Contribution

»

13.79

Diffusion Index T:

16.45

Fig. 12.  LAM and DI for dehazing model interpretation.

7) Intuitive Explanation on Auxiliary Degradations: To in-
tuitively illustrate the impact of auxiliary degradations on an-
chor task performance, we employ the Local Attribution Maps
(LAM) [7] to visualize how the model utilizes pixel information
from inputs to recover specific local regions. As shown in
Fig. 12, it is evident that positive auxiliary degradation enable
the network to leverage more information for recovery (see
yellow rectangle). Additionally, the Diffusion Index (DI) [7],
a metric quantifying the extent of input information utilized by
the network, is introduced. A larger DI indicates more pixels are
involved in the process. Our method outperforms original model,
demonstrating that auxiliary degradations expand the influence
areas of the network, thereby enhancing its recovery capability.

V. CONCLUSIONS AND LIMITATIONS

In this paper, we propose the Degradation Relationship Index
(DRI) to quantify the degradation relationship by measuring the
mean drop rate difference of validation loss between two models,
where one trained solely with the anchor degradation and the
other trained with the assistance of an auxiliary degradation.
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Benefiting from DRI’s ability to reflect the impact of auxil-
iary degradations on the anchor task, we can computationally
identify potentially beneficial auxiliary degradations to enhance
performance. Besides, a novel dataset, termed RESIDE+, is
constructed to eliminate the content discrepancy and serve as
a benchmark for this emerging research direction. Extensive
experiments verify the effectiveness and generalizability of DRI.

However, as one of the first attempts to quantify degrada-
tion relationships, DRI exhibits several limitations. First, DRI
exhibits inter-model variability in its quantitative values, pre-
venting it from serving as a cross-model consistent performance
indicator. Second, DRI quantifies degradation relationships on
a pairwise basis, which may become inefficient as the number
of potential degradations increases. To address these challenges,
our future work will concentrate on i) developing cross-model
consistent metrics through invariant feature normalization, en-
abling reliable performance prediction across different mod-
els, and ii) designing hierarchical computation frameworks to
replace pairwise operations, achieving sub-linear complexity
scaling for multi-degradation scenarios.
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