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Abstract

Despite remarkable advancements in text-to-image person
re-identification (TIReID) facilitated by the breakthrough
of cross-modal embedding models, existing methods of-
ten struggle to distinguish challenging candidate images
due to intrinsic limitations, such as network architecture
and data quality. To address these issues, we propose an
Interactive Cross-modal Learning framework (ICL), which
leverages human-centered interaction to enhance the dis-
criminability of text queries through external multimodal
knowledge. To achieve this, we propose a plug-and-
play Test-time Humane-centered Interaction (THI) mod-
ule, which performs visual question answering focused
on human characteristics, facilitating multi-round interac-
tions with a multimodal large language model (MLLM)
to align query intent with latent target images. Specif-
ically, THI refines user queries based on the MLLM re-
sponses to reduce the gap to the best-matching images,
thereby boosting ranking accuracy. Additionally, to ad-
dress the limitation of low-quality training texts, we in-
troduce a novel Reorganization Data Augmentation (RDA)
strategy based on information enrichment and diversity en-
hancement to enhance query discriminability by enrich-
ing, decomposing, and reorganizing person descriptions.
Extensive experiments on four TIReID benchmarks, i.e.,
CUHK-PEDES, ICFG-PEDES RSTPReid, RSTPReid, and
UFine6926, demonstrate that our method achieves remark-
able performance with substantial improvement. Code is
available at https://github.com/QinYang79/ICL.

1. Introduction
Recently, text-to-image person re-identification (TIReID)
[3–5, 7, 33, 34, 41] has made great progress in aligning text
descriptions and person images, enabling high-accuracy
person search and identification. Different from traditional
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Figure 1. The illustration of our motivation. When perform-
ing text-based person re-identification, (a) existing methods com-
monly exploit cross-modal models to calculate similarity (such as
IRRA [12] and RDE [21]) and then obtain the candidate person
images by ranking. However, due to the intrinsic limitations of
models and training data, they may not be able to distinguish chal-
lenging candidate images well enough to obtain satisfactory re-
sults. (b) Our motivation is to interact with the system for external
guidance like a human and gradually refine the user’s query from
the candidate items shown in (a) by multiple rounds of question-
answering, ultimately improving the overall ranking.

image-to-image re-identification [32, 39, 42, 43], TIReID,
as a rising task in the multimodal community [19, 20, 22,
23, 27], retrieves person images using user-customized text
queries, which is more practical in many scenarios where
an image query is unavailable, such as in video surveillance
systems [2] or crowd management [6]. A primary challenge
in TIReID is learning to associate text queries with the cor-
responding person images at a fine-grained level, bridging
the modality gap for accurate similarity measurement.

To overcome this challenge, recent efforts have devel-
oped various strategies to improve cross-modal associa-
tions, including local attribute modeling [37, 44], loss func-
tion designing [12, 21], ReID-domain pre-training [28, 38],
etc. Although these methods achieve promising perfor-
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mance, they are limited by the inherent defect of the of-
fline models and training data, making it hard to handle dy-
namic user query inputs and leading to poor generalization.
In practice, however, different users tend to input concise,
vague, and diverse text queries based on their memories
to the target person, thereby raising challenges for the of-
fline models to understand fine-grained human characteris-
tics from the queries. For example, as illustrated in Figure 1
(a), the user text query “A woman walking visible from the
back is wearing a white shirt, and black pants.” fails to cap-
ture some important contextual details like handheld objects
or background, resulting in inaccurate candidate images. In
brief, it is hard for offline models to handle dynamic and
challenging queries solely relying on their learned internal
knowledge. To break through this bottleneck, we could seek
to align queries with image candidates with the help of ex-
ternal knowledge, thereby reranking the retrieved images
and boosting the identification accuracy.

Recent studies [8, 13, 17] have explored integrating ex-
ternal knowledge from pre-trained models or (multimodal)
large language models to guide various downstream tasks.
For instance, Li et al. [17] leveraged multimodal knowledge
of pre-trained vision-language models [24] to enhance uni-
modal image representations for external-guided clustering.
However, this approach cannot achieve post-hoc improve-
ment for offline models, leading to infeasibility in practice
due to the prohibitive cost of fine-tuning or even retrain-
ing. In cross-modal retrieval, Han et al. [8] exploited the ex-
cellent comprehension and generation capabilities of multi-
modal large language models (MLLMs) to design an inter-
active re-ranking pipeline for text-to-video retrieval. How-
ever, Han et al. [8] introduces label leakage by using the
ground truth video as the video in mind for the MLLM an-
swerer agent, which is not applicable in actual testing.

In this paper, we present a novel Interactive Cross-modal
Learning framework (ICL) that exploits the multimodal
knowledge implicit in MLLMs to enhance the alignment
between text queries and target person images. Specifically,
we first propose a plug-and-play Test-time Human-centered
Interaction (THI) module that refines text queries through
interactions with an MLLM, enhancing the post-hoc abil-
ity of trained models to distinguish challenging candidates.
THI identifies the latent target images through multi-round
interactions with MLLMs, asking human-centered ques-
tions to the MLLM for fine-grained answers about the im-
ages, which refine the query texts to strengthen the align-
ment with the images, ultimately address the inherent limi-
tations of the input queries and enhancing ranking accuracy.
To address the intrinsic limitations in the trained models,
we propose a Reorganization Data Augmentation strategy
(RDA) to enrich and diversify pedestrian texts for training
enhancement, thereby transferring external knowledge in
MLLMs into the model. To enrich the texts, RDA applies

visual question answering via the MLLM on each image-
text pair to supplement fine-grained person characteristics.
Moreover, to enhance the diversity of texts, RDA presents
a decomposition-reorganization strategy to decompose per-
son descriptions into attribute-specific sub-sentences (e.g.,
clothes, pants, shoes, etc.), and rewrite them with MLLM
into multiple sentences with the same meaning. Subse-
quently, the rewritten sentences are randomly reordered and
recombined to generate varied augmented texts, thus boost-
ing data diversity and enhancing the generalization of mod-
els. Our main contributions are as follows:
• We introduce human-centered interaction to TIReID,

proposing a novel MLLM-driven Interactive Cross-modal
Learning framework (ICL), which leverages external
knowledge to overcome the inherent limitations of exist-
ing offline methods in handling dynamic queries.

• A plug-and-play Test-time Human-centered Interaction
module (THI) is presented to align query intent with la-
tent target images through multi-round interactions with
MLLMs, improving the ranking quality.

• An effective Reorganization Data Augmentation strategy
(RDA), applying MLLMs for text decomposition and re-
combination, is developed to generate discriminative and
diverse training texts, improving cross-modal learning.

• Extensive experiments on four text-to-image person re-
identification benchmarks verify the effectiveness and su-
periority of our method, which achieves promising per-
formance and superior generalization.

2. Related Work

2.1. Text-to-Image Person Re-identification

As a challenging topic in multimodal learning, text-to-
image person re-identification (TIReID) aims to search the
image of the target person with a given natural language
query. Existing methods [1, 12, 21, 28, 41] can be roughly
divided into three categories according to the used backbone
type: unimodal backbones, general multimodal pre-trained
backbones, and ReID-domain multimodal pre-trained back-
bones. The early TIReID methods [33, 35] commonly
use modality-specific unimodal backbones to encode text
or images for cross-modal alignment, e.g., ResNet [10],
BERT [30], etc. Recently, benefiting from the rapid de-
velopment of visual-language pre-training models [14, 24],
more and more researchers [3, 12, 21] have begun to
use general pre-trained models as the backbone networks
for solving TIReID, hoping that the pre-trained alignment
knowledge can improve modality representation and cross-
modal alignment. However, the performance improvement
is still limited due to the domain gap between the general
pre-training data and TIReID tasks. To this end, some at-
tempts [28, 38] exploit image-caption models or MLLMs
to annotate images, thus obtaining a large number of image-
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Figure 2. The illustration of our Test-time Human-centered Interaction (THI) module. THI includes K rounds of interactions to align query
intention with the latent target image by external guidance, where in each round, we perform human-centered visual question answering
around fine-grained person attributes to enhance the semantic consistency between the query and the intended person image, and then
improve the final ReID performance on the large-scale evaluation through efficient re-ranking. Besides, we perform supervised fine-tuning
via LoRA to inspire the discriminate ability of MLLM for ReID domain images and better align queries with latent target images.

text pairs for ReID-domain pre-training. Although promis-
ing performance has been achieved, they still cannot get rid
of the inherent defect of offline models during handling dy-
namic queries. In this paper, we propose a novel interactive
cross-modal learning framework based on MLLMs, which
exploits dynamic interactions for external guidance to im-
prove the generalization ability.

2.2. Visual Interactive Learning

With the booming development of multimodal large lan-
guage models (MLLMs) [15, 18, 29], exploiting visual in-
teraction to improve downstream tasks has attracted in-
creasing attention from researchers. We collectively refer
to these as visual interaction learning and divide them into
offline interaction [28, 31] and online interaction [8, 9, 13]
groups by engaging in specific task periods. The former
aims to use interactions to improve the training/pre-training
data, such as information richness and diversity. It is usu-
ally static and separated from users, which is the main-
stream of existing TIReID methods, e.g., Tan et al. [28] ap-
ply MLLMs to conduct interactions with multiple prompt
templates for better diversity. Unlike them, online interac-
tions are designed to be able to use real-time feedback to
improve training or testing. For example, Levy et al. [13]
propose to gradually clarify user intention through dialogue
to improve image retrieval performance. Likewise, Han et
al. [8] develop a rerank pipeline based on LLM-based it-
erative navigation. However, these methods cannot be di-
rectly used for TIReID effectively due to the differences in
tasks and data domains. In this paper, we develop a test-
time module based on MLLMs to conduct interactions for
external guidance, overcoming the limitations of the intra-

model knowledge in TIReID offline models.

3. Methodology
In this section, we introduce an Interactive Cross-modal
Learning framework (ICL), which consists of two core
comments to address the inherent challenges in offline mod-
els and training data, i.e., Test-time Human-centered Inter-
action module (THI) and Reorganization Data Augmenta-
tion (RDA). In Section 3.1, we provide the necessary defi-
nitions to facilitate the study. Then, we outline the details
of our THI and RDA in Sections 3.2 and 3.3, respectively.

3.1. Problem and Symbol Statement

Suppose that we have the query text q ∈ Q, a pedestrian im-
age v ∈ V , where Q and V are the text query set and image
gallery. The purpose of TIReID is to utilize the text query
to retrieve the ideal images from the gallery, thus achiev-
ing person searching by identities of retrieved images. To
achieve this, existing methods usually train an offline cross-
modal model fcross = {f, g} to measure the similarities
between text queries and pedestrian images. For a text q
and an image v, the similarity to measure the matching de-
gree can be represented as Sq,v ≡ Sim(f(q), g(v)), where
Sim(∗) is the similarity function, f and g are the text and
image encoders, respectively. Then, we can utilize q to
search relevant candidate images v̂ from V as follows:

V̂(q) = {v̂k}Kk=1 = Top-Kv∈V(Sq,v), (1)

where V̂(q) is the candidate set for q and K is the num-
ber of candidate images. In addition, our ICL also involves
MLLMs to conduct interactions and training augmentation,
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which we denote as M, and the prompt template function
for M is denoted by the symbol T . Based on the above def-
initions, we will elaborate on ICL in the following sections.

3.2. Test-time Humane-center Interaction

Anchor Localization. Due to the model bottleneck, it is
hard for existing methods to distinguish challenging can-
didate images relying solely on internal knowledge. Thus,
we exploit the fine-grained image understanding capability
of MLLMs to conduct external guidance. We first propose
asking questions such as “Can this text accurately describe
the image?” to let MLLMs explicitly tell us the latent target
(anchor) image. As shown in Figure 2, given a text query q,
we first get the corresponding candidate set V̂(q) and then
perform multiple (K) rounds of interactions according to
the ranking until the ideal image is determined. For the k-th
round, the answer for interaction can represented as:

aqv̂k = M(Tloc(q, v̂k)), (2)

where k ∈ {1, · · · ,K}, aqv̂k is the answer of ‘Yes’ or ‘No’,
v̂k is the Top-k candidate image for query q, and Tloc is the
prompt template function for anchor localization. However,
since there is a domain gap between ReID images and the
generic images used for pre-training or instruction-tuning
MLLMs, the answers of MLLMs are often unreliable. To
solve this, we exploit LoRA [11] to perform supervised
fine-tuning (SFT) on MLLMs to inspire the fine-grained
ability to identify the person image and the SFT loss is:

Llora = −
∑

(x,y)∈Z

|y|∑
t=1

log(pM(yt|x, y < t)), (3)

where x is the input Pormpt and y is the output
Response, Z = {Z+,Z−} is the SFT dataset. For Z+,
we select part of training texts ({qi}Nl

i=1) and the corre-
sponding ground-truth images ({v+i }

Nl
i=1) from the training

set to construct the input Pormpts, i.e., {Tloc(qi, v
+
i )}

Nl
i=1,

expecting MLLMs to output the Response of ‘Yes’. Sim-
ilarly, for Z−, we also use the text queries and the cor-
responding negative images from the training set to con-
struct the input Pormpts, expecting MLLMs to output the
Response of ‘No’. To make Z− more discriminative,
we use a TIReID pre-trained cross-modal model to obtain
the Top-10 image with different person ID as input negative
sample image for each text query by similarity ranking.
Human-centered VQA. For each round, once we confirm
the response of ‘Yes’, we will ask the anchor image (v̄) a
series of questions to learn more details about pedestrian
characteristics. These details can help us alleviate the dis-
crepancy between the user query and the information within
the anchor image, thus improving overall ranking by refin-
ing the query. We call this process human-centered visual
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Figure 3. The similarity statistics of the Top-1 retrieved items in
the test sets of the three benchmarks. It is obvious that the items
with higher similarity are more likely to be correct retrievals.

question answering (VQA), which is expressed as:

rv̄ = M(Tvqa({ci}
Nq

i=1, v̄)), (4)

where {ci}
Nq

i=1 are Nq questions directed at the detail char-
acteristics (e.g., gender, hair, upper body, lower body, shoes,
etc.) of the pedestrian image, rv̄ is the answer to {ci}

Nq

i=1

one by one, and Tvqa is the prompt template function for
human-centered VQA. To improve the consistency between
the image and the user query, a natural strategy is to con-
catenate these one-by-one answers after the original text.
However, due to the limitation of the maximum text length
that can be processed by the text model (e.g., it is usually 77
for CLIP), this will destroy the sequence structure. To this
end, we recommend merging these answers and the original
text by MLLMs to obtain a fluent and concise text, i.e.,

q̂ = M(Taggr(rv̄, q)), (5)

where q̂ is the merged text query and Taggr is is the prompt
template function for text aggregation.
Efficient Re-ranking. To apply the above process to large-
scale evaluation, efficiency is a factor that needs to be con-
sidered in the retrieval task, since introducing MLLMs to
interactions for external guidance inevitably brings addi-
tional inference costs. To improve the interaction efficiency,
we recommended adopting different strategies for different
rounds of interactions. We observe that the retrieval qual-
ity is positively correlated with the similarity between the
query and the Top-1 candidate image, as shown in Figure 3.
To this end, in the first round, we only interact with images
whose cross-modal similarity is greater than a threshold ξ
and the answer of anchor localization is ‘Yes’. This is be-
cause the retrievals with low similarities are more likely to
be wrong items. After the first round, we only interact with
the image that is all considered ‘No’ in the previous rounds
of anchor localization and whose cross-modal similarity is
less than the threshold ξ. This allows us to reduce unneces-
sary interactions and find text queries that really require in-
teractions, making our method more efficient on large-scale
evaluation. Given a query q, if the above constraints are
met, the interaction is carried out and we can get merged
text q̂ after human-centered VQA, the re-ranking similarity
Ŝq,v of any image v in V is:

Ŝq,v = λSq,v + (1− λ)S̄q̂,v, (6)
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where S̄q̂,v ≡ 1 if v is v̂1, otherwise, S̄q̂,v ≡ Sq̂,v , and
λ ∈ [0, 1] is a hyperparameter to balance the contribution of
the raw query and the refined text. To make our approach
clearer, we describe the detailed algorithm process of our
THI in Algorithm 1. Due to space limitations, all prompt
templates can be found in the supplementary material.

Algorithm 1 The interaction process of our THI

Input: The query set Q, the image gallery V , the offline
model fcross, the MLLM M, the similarity threshold ξ,
the number of interaction rounds K;

1: Obtain candidate sets {V̂(qi)}|Q|
i=1 for all queries in Q

via Equation (1);
2: for k = 1, 2, · · · ,K do
3: for i = 1, 2, · · · , |Q| do
4: Conduct anchor localization via Equation (2) and

output the answer of aqi
v̂i
k

based on the k-th candi-

date image v̂ik in V̂(qi);
5: if aqi

v̂i
k

shows ‘Yes’, k = 1, and Sqi,v̂i
1
> ξ then

6: Conduct human-centered VQA via Equa-
tions (4) and (5) to get the refined query q̂i;

7: Compute the re-ranking similarities between
query qi and all images via Equation (6);

8: end if
9: if {aqi

v̂i
j
}k−1
j=1 all show ‘No’, aqi

v̂i
k

shows ‘Yes’, k >

1, and Sqi,v̂i
1
≤ ξ then

10: Conduct human-centered VQA via Equa-
tions (4) and (5) to get the refined query q̂i;

11: Compute the re-ranking similarities between
query qi and all images via Equation (6);

12: end if
13: end for
14: end for
15: Re-ranking based on similarities;
Output: The new candidate images.

3.3. Reorganization Data Augmentation

Although THI can exploit interactions to provide exter-
nal knowledge during test time to improve retrieval qual-
ity, the cross-modal embedding model is still a bottleneck
that limits its further performance improvement. To this
end, as shown in Figure 4, we introduce a new Reorga-
nization Data Augmentation (RDA) strategy by enriching,
decomposing, and reorganizing person descriptions to im-
prove the discriminability and diversity of training data.
We first apply Human-centered VQA in THI to obtain rel-
evant characteristic descriptions and merge them with the
original text, thus obtaining a text with richer information,
i.e., q̂ = M(Taggr(M(Tvqa({ci}

Nq

i=1, v)), q)). Then, we
apply MLLMs to decompose enriched text q̂ into multi-
ple independent sub-sentences that describe individual at-

Decomposed texts:
1. The person is male.
2. The man has on a 
black jacket.
3. The man has on dark 
trousers. ⋯

Keep Diversity

Aug. Text

Different order: 
Ø Sub.2 Sub.1 Sub.3 ⋯
Ø Sub.2 Sub.1 Sub.3 ⋯
Different style:
Ø R.2-1 R.1-2 R.3-4 ⋯
Ø R.2-2 R.1-1 R.3-2 ⋯

Randomly

Sub text: The person is male.
Rewritten texts:
1. The individual is male.             
2. The person is a man.              
3. The person has a male.

Raw text:
A man A man in a 
black jacket, dark 
trousers, ⋯ , with 
a plastic bag in his 
hand, looking at 
his mobile phone.

Text

Sub.1

Sub.2

Sub.𝑛

⋯

R.1-1

R.1-2

R.1-3

R.1-4

R.1-5

⋯

Enriched text:
A man with short dark hair, 
wearing a black jacket, dark 
trousers, ⋯ , The background 
appears to be a busy urban 
area with other pedestrians 
and buildings.

Human-centered VQA

Figure 4. The illustration of our RDA. The purpose of RDA is
to supplement more details to the original training texts through
human-centered VQA, improving the discriminability of texts. In
addition, to enhance diversity, RDA maximizes diversity through
the Decomposition-Rewriting-Reorganization strategy.

tributes without interfering with each other, i.e., {q̃i}ni=1 =
M(Tdec(q̂)), where {q̃i}ni=1 are the n sub-sentences and
Tdec is the prompt template function for text decomposition.
The purpose of decomposition is to be able to reorganize
the text in a different order later. To increase diversity, we
rewrite each sub-sentence into multiple sentences with dif-
ferent styles but the same meaning. For sub-sentence q̃,
we conduct rewriting by R = {q̆j}mj=1 = M(Trwt(q̃)),
where R is the set with m rewritten sentences and Trwt is
the prompt template function for text rewriting.

Finally, for a text q, we can obtain the set {Ri}ni=1 that
contains a large number of style sub-sentences. So far, we
can obtain augmented texts with different sub-sentence or-
ders and different style combinations as shown in Figure 4,
which we represent as q̌. During training, we can mix the
augmentation texts (q̌) with the original texts (q) for cross-
modal learning, thereby improving model-intra knowledge
and generalization. Due to space limitations, more training
details can be found in the supplementary material.

4. Experiments
In this section, we conduct extensive experiments to verify
the effectiveness, superiority, and generalization of the pro-
posed ICL on four public benchmark datasets.

4.1. Datasets and Evaluation Protocols

Datasets. In our experiments, we use three coarse-grained
benchmarks, CHUK-PEDES [16], ICFG-PEDES [5],
and RSTPReid [41], and one fine-grained benchmark,
UFine6926 [44], to evaluate our ICL. Compared with the
coarse-grained benchmark, the fine-grained benchmark has
richer texts with fine-grained information. For all datasets,
we follow their official settings for data partitioning. More
details are provided in the supplementary materials.
Evaluation Protocols. To measure performance, we uti-
lize the widely accepted Rank-K (1,5,10) metrics to mea-
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CUHK-PEDES ICFG-PEDES RSTPReid
Methods Image Enc. Text Enc. Rank-1 Rank-5 Rank-10 mAP mINP Rank-1 Rank-5 Rank-10 mAP mINP Rank-1 Rank-5 Rank-10 mAP mINP
❶ VL-Backbones w/o ReID-domain pre-training
IVT [26] ViT-Base BERT 65.69 85.93 91.15 60.66 - 56.04 73.60 80.22 - - 46.70 70.00 78.80 - -
LCR2S [36] RN50 BERT 67.36 84.19 89.62 59.20 - 57.93 76.08 82.40 38.21 - 54.95 76.65 84.70 40.92 -
CFine [37] CLIP-ViT BERT 69.57 85.93 91.15 - - 60.83 76.55 82.42 - - 50.55 72.50 81.60 - -
RaSa [1] Swin-B BERT 76.51 90.29 94.25 69.38 - 65.28 80.40 85.12 41.29 - 66.90 86.50 91.35 52.31 -
IRRA [12] CLIP-ViT CLIP-X. 73.38 89.93 93.71 66.13 50.24 63.46 80.25 85.82 38.06 7.93 60.20 81.30 88.20 47.17 25.28
TBPS [3] CLIP-ViT CLIP-X. 73.54 88.19 92.35 65.38 49.25 65.05 80.34 85.47 39.83 7.87 62.10 81.90 87.75 48.00 25.86
CFAM [44] CLIP-ViT CLIP-X. 75.60 90.53 94.36 67.27 - 65.38 81.17 86.35 39.42 - 62.45 83.55 91.10 49.50 -
RDE [21] CLIP-ViT CLIP-X. 75.94 90.14 94.12 67.56 51.44 67.68 82.47 87.36 40.06 7.87 65.35 83.95 89.90 50.88 28.08
Our ICL CLIP-ViT CLIP-X. 76.41 90.48 94.33 68.04 51.99 68.11 82.59 87.52 40.81 8.18 67.70 86.05 91.75 52.62 29.36
Our ICL⋆ CLIP-ViT CLIP-X. 77.91 90.27 94.14 69.13 53.40 69.02 82.45 87.36 41.21 8.30 70.55 85.95 91.65 53.68 30.13
❷ VL-Backbones with ReID-domain pre-training
IRRA♭ [12] CLIP-ViT CLIP-X. 74.05 89.48 93.64 66.57 - 64.37 80.75 86.12 38.85 - 61.90 80.60 89.30 48.08 -
APTM [38] Swin-B BERT 76.53 90.04 94.15 66.91 - 68.51 82.99 87.56 41.22 - 67.50 85.70 91.45 52.56 -
NAM♮ [28] CLIP-ViT CLIP-X. 77.47 90.84 94.67 69.43 54.08 66.76 82.02 87.17 41.45 9.53 67.15 86.55 91.90 52.00 28.46
Our ICL CLIP-ViT CLIP-X. 78.18 91.63 94.83 69.58 53.48 69.22 83.49 88.06 42.34 9.01 70.00 86.60 91.70 54.16 30.93
Our ICL⋆ CLIP-ViT CLIP-X. 79.06 91.26 94.72 70.44 54.70 70.05 83.35 87.91 42.70 9.13 72.55 86.60 91.30 55.19 31.72

Table 1. Performance on the three coarse-grained benchmarks. The results with THI are marked with ⋆. Note that IRRA♭ means using the
pre-trained Backbones with MALS [38] and the results of NAM♮ are reproduced by us.

Methods Rank-1 Rank-5 Rank-10 mAP mINP
LGUR [25] 70.69 84.57 89.91 68.93 -
SSAN [5] 75.09 88.63 92.84 73.14 -
IRRA [12] 85.02 94.31 96.75 83.91 77.30
RDE [21] 87.60 95.65 97.46 86.10 79.54
CFAM(B/16) [44] 85.55 94.51 97.02 84.23 -
CFAM(L/14) [44] 88.51 95.58 97.49 87.09 -
❶ Our ICL 89.17 96.13 97.88 87.49 81.50
❶ Our ICL⋆ 90.67 95.98 97.86 88.29 82.60
❷ Our ICL 91.02 96.98 98.17 89.76 84.70
❷ Our ICL⋆ 91.78 96.83 98.16 90.33 85.62

Table 2. Performance comparison on the UFine6926 dataset. The
results of IRRA and RDE are reproduced by us.

sure the TIReID performance. Like [12, 21], we also report
the mean Average Precision (mAP) and mean Inverse Neg-
ative Penalty (mINP) as auxiliary metrics.

4.2. Implementation Details

To achieve interactive TIReID, we choose RDE [21] and
Qwen2-VL-7B-Instruct [29] as the investigated TIReID
method and MLLM. For the sake of fairness, we do not
modify any settings of RDE, including model architecture
(CLIP-ViTB/16 [24]), hyperparameters, and training pa-
rameters. To be compatible with the fine-grained bench-
mark, following [44], the maximum length of the textual
tokens of CLIP is set to 168 by interpolating the positional
embedding layer with an initial learning rate of 5e-5. As
for fine-tuning MLLMs, we use the Llama-Factory frame-
work [40] to conduct SFT with LoRA [11] for 2 epochs.
The train batch size per device is set to 4, the gradient accu-
mulation steps are set to 16, the initial learning rate is 5e-5,
and the hyperparameters α and r of LoRA are set to 16 and
8, respectively. During inference, the temperature is set to
0.01 to keep reproducibility. Note that all experiments can
be completed on two GeForce RTX 24GB 3090 GPUs.

4.3. Comparison with State-of-the-Arts

In this section, to verify the superiority of our ICL, we
compare our method with more than 15 baselines including
recent advanced methods (e.g., RDE (CVPR’24) [21] and
NAM (CVPR’24) [28]). Based on the backbone type, we
divide the baselines into two groups (❶ and ❷) as shown Ta-
ble 1, i.e., the baselines using VL-Backbones w/o and with
ReID-domain pre-training. For the group ❷, we use the pre-
trained weights released by [28] to initialize CLIP for fair
comparison. The results are reported in Tables 1 and 2.
Results on coarse-grained datasets. Table 1 report the re-
sults evaluated on the coarse-grained datasets. We can see
that our method can achieve competitive performance even
without THI. By performing THI, the Rank-1 score of our
method is greatly improved, e.g., in the group ❶, the Rank-1
scores on the three datasets are improved by 1.50%, 0.91%,
and 2.85%, respectively. In addition, mAP and mINP scores
have also improved greatly, which indicates that the overall
ranking has improved. In group ❷, our method achieves
the best scores on most metrics, especially Rank-1 reached
72.55% on RSTPReid, which is sufficient to verify the su-
periority. However, we found that THI slightly degraded
Rank-5 and Rank-10, which is because we only conducted
5 rounds of interaction. As long as the locating anchor im-
age is incorrect, the errors will accumulate, which can be
relieved by increasing the rounds of interaction. But in gen-
eral, THI can significantly improve Rank-1 and the overall
ranking (mAP and mINP).
Results on fine-grained dataset. Table 2 shows the re-
sults on the fine-grained dataset whose average text length
is over 80. Such kind of fine-grained description often has a
clear query intention. For better comparison, we provide the
performance of IRRA and RDE on the UFine6926 dataset.
From the results, our method can still achieve excellent per-
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CUHK-PEDES ICFG-PEDES RSTPReid
Methods Training Sets Rank-1 Rank-5 Rank-10 mAP mINP Rank-1 Rank-5 Rank-10 mAP mINP Rank-1 Rank-5 Rank-10 mAP mINP

IRRA [12]
CUHK-PEDES 73.38 89.93 93.71 66.13 50.24 42.41 62.11 69.62 21.77 1.95 53.25 77.15 85.35 39.63 16.60
ICFG-PEDES 33.48 56.29 66.33 31.56 19.20 63.46 80.25 85.82 38.06 7.93 45.30 69.25 78.80 36.82 18.38

RSTPReid 32.80 55.26 65.81 30.29 17.61 32.30 49.67 57.80 20.54 3.84 60.20 81.30 88.20 47.17 25.28

RDE [21]
CUHK-PEDES 75.94 90.14 94.12 67.56 51.44 48.18 66.30 73.70 25.00 2.33 54.90 77.50 86.50 41.27 17.84
ICFG-PEDES 38.11 59.24 68.44 34.16 20.44 67.68 82.47 87.36 40.06 7.87 49.25 72.10 80.20 38.46 18.33

RSTPReid 36.94 58.22 67.58 33.65 20.42 42.17 58.32 65.49 26.37 4.94 65.35 83.95 89.90 50.88 28.08

Our ICL
CUHK-PEDES 76.41 90.48 94.33 68.04 51.99 48.57 66.66 73.75 25.30 2.40 55.80 79.60 87.65 42.09 17.41
ICFG-PEDES 42.87 64.20 73.44 38.19 23.58 68.11 82.59 87.52 40.81 8.18 52.50 75.05 83.00 41.82 21.14

RSTPReid 41.31 61.86 70.31 36.78 22.37 45.93 62.70 68.80 28.89 5.63 67.70 86.05 91.75 52.62 29.36

Our ICL⋆
CUHK-PEDES 77.91 90.27 94.14 69.13 53.40 52.80 66.49 73.49 25.60 2.44 61.30 79.25 87.40 43.42 18.01
ICFG-PEDES 49.29 64.34 73.55 40.82 25.38 69.02 82.45 87.36 41.21 8.30 60.15 75.30 83.15 43.72 22.04

RSTPReid 47.35 61.45 70.34 38.91 23.68 50.52 61.56 68.57 29.26 5.73 70.55 85.95 91.65 53.68 30.13

Table 3. Comparison of mutual generalization capabilities between coarse-grained datasets.

Source → Target Methods Rank-1 Rank-5 Rank-10 mAP mINP

CUHK. → UFine.

IRRA [12] 37.51 54.92 64.29 40.76 34.33
RDE [21] 40.37 57.49 66.05 42.68 35.78
Our ICL 46.40 63.55 72.08 48.68 41.56
Our ICL⋆ 57.76 64.13 72.81 53.97 45.64

ICFG. → UFine.

IRRA [12] 15.02 26.79 33.90 17.10 12.75
RDE [21] 17.86 31.01 38.56 19.82 14.74
Our ICL 27.95 44.20 52.20 29.85 23.20
Our ICL⋆ 36.81 44.65 52.73 34.12 26.61

RSTP. → UFine.

IRRA [12] 13.21 25.67 33.93 15.60 11.09
RDE [21] 14.00 25.23 32.64 16.22 11.90
Our ICL 23.89 38.30 46.70 25.54 19.20
Our ICL⋆ 31.23 38.56 47.02 28.90 21.80

UFine. → CUHK

IRRA [12] 37.74 60.12 70.13 35.94 23.21
RDE [21] 39.41 61.14 70.11 36.49 23.32
Our ICL 49.04 70.27 78.64 44.54 29.58
Our ICL⋆ 56.87 70.19 78.53 47.31 31.20

UFine. → ICFG.

IRRA [12] 34.52 55.41 64.44 17.96 1.95
RDE [21] 40.37 60.14 68.41 20.54 2.19
Our ICL 43.10 62.92 70.73 22.73 2.56
Our ICL⋆ 47.83 62.67 70.48 23.16 2.62

UFine. → RSTP.

IRRA [12] 37.65 63.70 73.00 29.00 11.80
RDE [21] 39.90 63.50 74.75 29.92 12.43
Our ICL 48.85 72.65 81.80 36.91 16.39
Our ICL⋆ 55.35 72.40 81.50 38.64 17.23

Table 4. Generalization capabilities between coarse-grained and
fine-grained datasets. The best scores in each task are in bold.

formance, with Rank-1 exceeding 91%. This shows that
interaction is also applicable to the fine-grained scenario.

4.4. Generalization Study

To evaluate the generalization, Tables 3 and 4 report the
cross-domain performance on four datasets, including the
coarse-to-fine, coarse-to-fine, and fine-to-coarse generaliza-
tion experiments. From the results, our method achieves
better generalization than RDE even without THI thanks
to the training enhancement of RDA. When THI is per-
formed, the cross-domain performance is dramatically im-
proved, for example, from CUHK-PEDES to RSTPReid,
THI brings an improvement of more than 4% on Rank-1.
This shows that THI is a potential solution to generaliza-

tion challenges in the future. From the generalization ex-
periments between fine-grained and coarse-grained datasets
shown in Table 4, ICL can also achieve the best cross-
domain performance, e.g., compared with the best base-
line RDE, from UFine6926 domain to CUHK-PEDES do-
main, our method improves Rank-1 and mAP by 17.49%
and 10.86%, respectively, which further verifies the cross-
domain generalization of our method.

CUHK-PEDES ICFG-PEDES RSTPReid
Methods THI Rank-1 mAP Rank-1 mAP Rank-1 mAP ∆Avg

CLIP [24] ✘ 71.64 63.92 60.11 34.52 56.55 44.52 +2.57
✔ 73.77 65.66 63.57 34.95 61.45 46.25

IRRA [12] ✘ 73.38 66.13 63.46 38.06 60.20 47.17 +1.86
✔ 76.06 67.42 65.26 38.58 63.75 48.47

RDE [21] ✘ 75.94 67.56 67.68 40.06 65.35 50.88 +1.41
✔ 77.47 68.62 68.72 40.63 68.45 52.01

Table 5. Transferability results on three coarse-grained bench-
marks. ∆Avg represents the average improvement.

4.5. Transferability Study

Our interactive module is separate and independent from
the training of existing TIReID methods, so it can be plug-
and-play with existing methods to improve ReID perfor-
mance. To verify the transferability of our THI, we con-
duct experiments on multiple baselines, and the results are
shown in Table 5. Except for the CLIP results we repro-
duced, all other experiments used public pre-trained model
weights. From the results of Table 5, the interactive strat-
egy application can significantly improve Rank-1 and mAP,
which shows that the external guidance by interactions via
MLLMs can further clarify the text-image alignments and
improve the overall ranking. The average improvements on
the three datasets are 2.57%, 1.86%, and 1.41%, respec-
tively, which seriously proves the transferability of our THI.

4.6. Ablation and Parameter Study

To explore the effects of each proposed component, i.e.,
THI and RDA, we first conduct the ablation study on three
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coarse-grained datasets as reported in Table 6. From the
results, each component can bring performance gains on
Rank-1 and mAP, which verifies the reliability and ratio-
nality of the method. Especially the introduction of THI
has greatly improved the Rank-1 accuracy from 68.95% to
70.55% on the RSTPReid dataset. In addition, our RDA
also brings considerable performance gains, especially on
the RSTPreid dataset. Also, we conduct the parameter anal-
ysis on the CHUK-PEDES dataset on two free hyperparam-
eters, i.e., the similarity threshold ξ and the balance factor
λ. The former filters unnecessary retrievals to improve the
interaction efficiency, while the latter controls the contribu-
tion of refined texts. Based on Figure 5, in our experiments,
we set ξ in the range of 0.5 ∼ 0.6 and λ to 0.8, thus miti-
gating the risk of introducing noisy external knowledge.

CUHK-PEDES ICFG-PEDES RSTPReid
No. THI RDA LoRA Rank-1 mAP Rank-1 mAP Rank-1 mAP
#1 ✔ ✔ ✔ 77.91 69.32 69.02 41.21 70.55 53.68
#2 ✔ ✔ ✘ 76.38 68.59 67.92 41.13 69.00 53.11
#3 ✘ ✔ ✘ 76.41 68.04 68.11 40.81 67.70 52.62
#4 ✘ ✘ ✘ 75.94 67.56 67.68 40.06 65.35 50.88

Table 6. Ablation studies on CHUK-PEDES, ICFG-PEDES, and
RSTPReid datasets. The best scores are in bold.
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Figure 5. Variation of performance with different ξ and λ.

4.7. Interactive Study

This section further explores the interactive module, i.e.
THI. We report the performance (mAP) changes after mul-
tiple rounds of interactions in Figure 6. The mAP score
can reflect the overall retrieval quality. From the results,
the performance improvement is obvious in the first few
rounds (≤ 2) since the items that meet the query seman-
tics are mostly concentrated at the top of the ranking. How-
ever, after > 2 rounds, the performance gain is gradually
not obvious as the number of queries requiring interaction
decreases. But generally, as the number of rounds increases,
the overall performance gradually improves. In all our ex-
periments, we performed 5 rounds of interaction. In addi-
tion, we visualize the top-10 retrieved results before and af-
ter applying THI in Figure 7. Due to the inherent limitations
of the intra-model knowledge, it is difficult to obtain satis-
factory results without the help of THI. In contrast, our THI
can dynamically enrich queries by interacting with MLLMs
to achieve a more reliable ranking. More example results
are given in the supplementary material.
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Figure 6. Performance (mAP) versus rounds on three datasets.
Round 0 indicates the setting without using THI.

Raw: The woman is wearing a white t-shirt
with bananas on it and khaki shorts. 
Merged: The woman has long dark hair and
is wearing a white t-shirt with bananas on it
and khaki shorts, a sleeveless top with a
pattern, shorts, flip-flops, no glasses, no
scarf, a brown object in her hand, no
backpack, a hat with a pattern, no belt or
waistband, and walking in a store with
shelves and products.

Raw: The man has short dark hair, is
wearing a blue shirt and stonewashed jeans.
He's wearing a watch on his left wrist.
Merged: The man has short dark hair and is
wearing a blue shirt with short sleeves, gray
pants with a straight cut, black and white
sneakers, a belt, and a watch on his left wrist.
He is walking in a busy indoor area with
many people in the background.

Figure 7. Top-10 retrieved results on CUHK-PEDES dataset be-
tween ICL (the first row) and ICL with THI (the second row).

5. Conclusion

In this paper, we explore interactive text-to-image person
re-identification, which aims to improve the alignment be-
tween dynamic queries and challenging candidate images
by leveraging external guidance from MLLMs. To achieve
this, we develop an Interactive Cross-modal Learning (ICL)
framework to alleviate the inherent challenges of offline
models and training data by, including a plug-and-play Test-
time Human-centered Interaction (THI) module and Reor-
ganization Data Augmentation (RDA). Extensive experi-
ments and analysis show that our framework can effectively
transfer external knowledge in MLLMs into offline mod-
els for guiding re-identification, showing excellent perfor-
mance and generalization.
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