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Abstract

Despite being trained on massive data, today’s vision foun-
dation models still fall short in detecting open world ob-
jects. Apart from recognizing known objects from training,
a successful Open World Object Detection (OWOD) system
must also be able to detect unknown objects never seen be-
fore, without confusing them with the backgrounds. Unlike
prevailing prior works that rely on probability models to
learn “objectness”, we focus on learning fine-grained, class-
agnostic attributes, allowing the detection of both known
and unknown objects in an explainable manner. In this paper,
we propose Partial Attribute Assignment (PASS), aiming to
automatically select and optimize a small, relevant subset of
attributes from a large attribute pool. Specifically, we model
attribute selection as a Partial Optimal Transport (POT)
problem between known visual objects and the attribute pool,
in which more relevant attributes signify more transported
mass. PASS follows a curriculum schedule that progressively
selects and optimizes a targeted subset of attributes dur-
ing training, promoting stability and accuracy. Our method
enjoys end-to-end optimization by minimizing the POT dis-
tance and the classification loss on known visual objects,
demonstrating high training efficiency and superior OWOD
performance among extensive experimental evaluations.*

1. Introduction

Deep learning and foundation models have emerged as crit-
ical Al technologies [1, 55], impacting various aspects of
modern life. However, their success has been largely based
on the closed-world assumption, which presumes a static and
well-defined environment [76]. In practice, this assumption
is difficult to uphold, as real-world conditions are dynamic
and unpredictable, with unforeseen situations and unseen
objects regularly appearing. Open World Object Detection
(OWOD) [22] has emerged as a remedy to deliver reliable
detection in the face of new environments with unknown ob-
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Figure 1. The role of attributes in Open World Object Detection
(OWOD). (a) Unknown objects can be detected via shared visual/
functional attributes with known objects. (b) Our method is able
to automatically identify and optimize a small subset of relevant
attributes from a large pool, effectively enabling the detection of
both known and unknown objects.

jects. In addition to recognizing known objects that appeared
in training, a successful OWOD system must also detect and
continually learn previously unseen objects without mistak-
enly classifying them as backgrounds.

Recent works mainly use probability distribution estima-
tion to model the “objectness” information, i.e., the prob-
ability of a candidate proposal being an object rather than
backgrounds [79]. In this way, OWOD can be decomposed
into two sub-tasks that respectively focus on objectness es-
timation and known class recognition [54]. Although this
approach has significantly improved the detection of un-
known objects, it has certain limitations in explainability
and ambiguity. On the one hand, the learned probabilistic
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model is unable to explain how the objects—both the known
and the unknown—are detected. On the other hand, when
background features resemble those of the unknown objects,
the model can still misclassify them.

In this paper, we focus on detecting open world objects
using fine-grained, class-agnostic attributes that are visually
and/or functionally related to the known objects. These at-
tributes can be described using natural languages with rich
semantic information, and thus are naturally explainable and
less ambiguous. The emphasis on intrinsic object attributes
offers stronger resistance to confusion in scenarios where
background and unknown object features overlap, making it
particularly suitable for dynamic open-world environments.
As illustrated in Fig. 1(a), attributes can be useful in detect-
ing both known and unknown object classes, e.g., the learned
“umbrella-1ike” attribute from known classes can be
used to detect the unknown fungi. Despite the promising
potential of using attributes in OWOD, effectively curat-
ing a set of attributes that are closely related to the specific
task from a large pool of attributes remains a significant
challenge. To this end, some existing method [78] seeks a
set of representative attributes that can effectively classify
known objects with multistage processes—such as attribute
selection and refinement—which are time-consuming and
computationally expensive. More importantly, the separation
of the selection and refinement processes may accumulate
errors, leading to inaccuracies in the results of the attribute
selection and refinement.

We propose to tackle this dilemma using Partial Attribute
Assignment (PASS), an approach that progressively selects
and optimizes a targeted subset of relevant attributes through-
out the training process in an end-to-end manner. In particu-
lar, we model attribute selection as a Partial Optimal Trans-
port (POT) problem [6] between known visual objects and
the attribute pool, in which more relevant attributes signify
more mass transported to the visual objects. Unlike conven-
tional OT [56] that assumes identical mass in both distribu-
tions to be completely transported, POT allows the transport
of only a targeted fraction of total mass from one distribution
to another. As such, the attribute pool can be viewed as a
collection of both in-distribution (ID) and out-of-distribution
(OOD) attributes w.r.t. the visual objects, where we can use
the visual object distribution as the baseline distribution to
filter out redundant OOD attributes.

To achieve stable, accurate attribute selection and opti-
mization simultaneously, PASS follows a curriculum learn-
ing [4] schedule that progressively targets and optimizes a
subset of attributes throughout training. PASS ensures that
each filtered subset is highly representative and provides
broad coverage of the visual objects, by iteratively focusing
on and refining a smaller subset of attributes guaranteed by
the OT theory. As training progresses, the selected attributes
reach a balanced state between representativeness and cover-

age, allowing the model to better adapt to both known and
unknown objects. This process also reduces computational
costs by gradually limiting the number of attributes intro-
duced. Our method enjoys end-to-end optimization by mini-
mizing both the POT distance and the classification loss for
known visual objects. During inference, the learned attributes
play a dual role: they support the recognition of known
classes through the mapping relationships established during
training, while also enabling the detection of unknown ob-
jects by leveraging the correlation between object proposals
and the learned attributes. Extensive experiments demon-
strate that our method significantly outperforms baseline
methods, validating both the feasibility of attribute-based
OWOD and the effectiveness of our approach in curating
more accurate attributes for OWOD.

In a nutshell, our main contributions are

* We model the attribute curation issue in OWOD as a Partial
Optimal Transport (POT) problem, enabling end-to-end at-
tribute selection and optimization for effectively detecting
both known and unknown objects;

* We propose a curriculum selection strategy by progres-
sively optimizing a targeted subset of attributes with strong
representativeness and broad coverage, benefiting both
training stability and selection effectiveness;

» Extensive experiments demonstrate the absolute superi-
ority of the proposed method in terms of both training
efficiency and detection performance.

2. Related Work

Open World Object Detection. Open World Object De-
tection (OWOD) [22] enhances traditional object detectors
by shifting away from closed-set assumptions, enabling
dynamic adaptation to novel classes as encountered in
real-world settings [20, 29, 30, 33, 34, 67, 74]. Existing
works [27, 51, 61, 65, 69, 70] reduce the overlap between
known, unknown classes and the background distributions
using different ways, e.g., pseudo-labeling [ 18, 38], object-
ness estimation [54, 79], and hierarchical modeling [13, 37].
OWOD is also related to similar tasks such as Class-Agnostic
Object Detection [14, 21, 23, 36, 44, 45, 50, 59, 60] and
Open-Vocabulary Object Detection (OVOD) [17, 25, 41,
42,58, 71, 75]. Recent advances, such as FOMO [78] and
a concurrent work UMB [62], extend the standard OVOD
method to OWOD by utilizing vision and language foun-
dation models. By identifying objects based on semantic
attributes [26, 49, 53], they learn class-agnostic attributes to
detect task-relevant unknown objects, yet require multistage
attribute selection and refinement, which is time-consuming
and computationally inefficient. In this paper, we propose an
end-to-end attribute curation method that not only benefits
the training efficiency but also largely improves the detection
performance in both known and unknown classes.
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Optimal Transport. Optimal Transport (OT), originally
introduced by Monge [43] to minimize the cost of transport-
ing items, has become a prominent tool in machine learning
and computer vision for matching distributions across do-
mains [46, 56]. OT has been widely applied in distribution-
based tasks [8, 57, 73] such as generative models [2], cluster-
ing [19, 66], domain adaptation [1 1], object detection [16]
and structural tasks such as sequence [9], graph [63], and
image matching [32, 72]. To address OT’s high computa-
tional demands, the Sinkhorn OT [12] offers a solution by
approximating OT through an efficient iterative algorithm.
Partial OT (POT), a variant of OT that transports only a por-
tion of the mass, addresses cases where distributions only
partially overlap, making it especially relevant in scenarios
such as open-set domain adaptation [6, 7, 15, 35, 48, 64, 68].
The Sinkhorn algorithm has been extended to POT to further
reduce computational costs [3]. In our work, we utilize POT
to dynamically match attribute embeddings with visual em-
beddings of known object classes, selecting and optimizing
the most representative attributes for effectively detecting
both known and unknown objects.

3. Background

OWOD with Foundation Models. Open World Object
Detection (OWOD) requires a model to detect and incremen-
tally learn unknown objects. In particular, there are multiple
stages/tasks for training and evaluation, indicated by ¢. In
task ¢, the model can be trained on K* known object classes
from K' = {O%,0%,...,0%.}, and to be evaluated on a
test set that contains both known and unknown classes. To
achieve that, we use an additional Of to denote the unknown
classes, alongside the K¢ known classes. In fact, 03 repre-
sents U* classes of interest that are unknown to the model in
the task ¢, i.e., U' = {O%ct 1, Ok, - -+, Oi e} After
discovering the unknown object classes, the model can be
updated with the knowledge of these new classes using anno-
tations from an oracle (e.g., a human annotator) in task ¢ + 1.
As a result, the model is ready to detect K'*! = Kt + U?
known object classes in the test set, as well as additional
unknown classes for the subsequent task cycle.

To push the boundary of OWOD in real-world applica-
tions, we follow a recent work [78] to make use of exist-
ing pretrained foundation models in open-vocabulary ob-
ject detection [41, 71], e.g., vision and language encoders,
and adapt them to OWOD. The training follows a few-shot
paradigm: for the z-shot, only z images per known class
are given, with only one bounding box label and one object
class label for each image. For each dataset, we use the at-
tribute texts proposed by a Large Language Model (LLM),
i.e., GPT-3.5, by prompting with the known class names us-
ing the template described in recent works [40, 77, 78]. This
will result in an attribute pool with numerous class-agnostic
attributes visually and/or functionally related to the known

objects, e.g., shape is straight.

Optimal Transport Preliminary. Optimal Transport (OT)
is a powerful tool for measuring the distance between two
distributions. Here we review the discrete OT scenario that is
more related to our framework and refer the readers to [12]
for more details.

Assuming we have two sets of data points (features) X =
{Zpm}M_ and Y = {y,,}V_,, their discrete distributions
can be formulated as

M 1 N 1
X=3) e V=) by D
m=1 n=1

where ¢ is the Dirac function and we use the uniform distri-
bution to equally view each data point. The OT distance is
defined as the smallest cost of transporting X to ):

dor(X,Y;C) £ Tegl(i)r(l )

(T,C)r, 2)
in which C € Rf *N s the cost matrix between X and
Y where Cy, p, = ¢(Tm, y,,) is the transport cost from x,,
to vy,,, with ¢(-) being the cost function (e.g., the cosine
distance), T is the transport plan to be solved, and (-, ) p
denotes the Frobenius inner product. The optimization of OT
distance satisfies two marginal constraints:

X, Y) 2 {TeRY*NT1ly =X, T 1y =V}, 3)

where 1, is an N-dimensional vector of all ones, and we
slightly abuse X, V to denote X = 7715, Y = - 1n to
reflect the discrete probability in Eq. (1).

4. Method

We propose Partial Attribute Assignment (PASS) to address
the challenging Open World Object Detection (OWOD) task.
PASS is composed of three modules shown in Fig. 2, which
are introduced in separate subsections below.

4.1. Partial Attribute Assignment

As discussed above, now we have z-shot images of K known
object classes (the superscript ¢ is omitted for brevity) and
N attribute texts in the attribute pool. Our goal is to select
and optimize a small set of relevant attributes from the at-
tribute pool, with the target attribute quantity denoted as
N’ € (0, N]. The resulting N' attributes are to be used for
effectively detecting both known and unknown objects.
Formally, we collect the visual object embeddings as
V = [vy,vs,...,vy] € RP*M and the attribute em-
beddings as A = [ai,as,...,ay] € RP*YN in the D-
dimensional embedding space using pretrained vision and
text encoders [41, 47], where M = z - K is the number of
known image patches obtained using bounding box labels,
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Figure 2. Overview of the proposed Partial Attribute Assignment (PASS) for OWOD. PASS is constructed upon pretrained vision and text
encoders [41, 47] and is designed to identify and refine a set of relevant attributes from an attribute pool, which are essential for detecting
both known and unknown object classes. (a) We employ Partial Optimal Transport (POT) to model the assignment problem between
attributes and known visual objects (Sec. 4.1). (b) The resulting transport plan T is used to generate attribute in-distribution (ID) scores s,
which help in selecting the most relevant attributes for the specific task (Sec. 4.2). (¢) These attribute ID scores are further used to reweight
the selected attributes, which are subsequently applied to compute object class predictions via a learnable mapping matrix (Sec. 4.3).

and all embeddings are ¢ normalized. Likewise, we can
denote the discrete distributions of V and A as V and A
following Eq. (1). The conventional OT assumes that the
two distributions have the identical total probability mass,
i.e., ||V|l1 = || A1, and that all the mass of .A must be trans-
ported. Although this assumption works effectively for tasks
that involve identical distributions, it faces challenges in our
scenario, where only a subset of samples in .4 aligns with V.

A workaround is to transport only the mass of in-
distribution (ID) samples between ) and A while retaining
the out-of-distribution (OOD) mass within A. This leads
to the concept of Partial OT (POT) [6], which relaxes the
assumption of equal total mass between ) and A. Instead,
it allows for transporting a portion of the mass within the
range [0, min(|| V|1, ||A]|1)]- To this end, we use the visual
distribution V as a baseline distribution to filter out redun-
dant outliers in A. Accordingly, the visual distribution } and
attribute distribution .4 are redefined as

M N
v=3" %&,m LA=Y S, @)
m=1 n=1

where o = % > 1 is the attribute redundant rate reflecting

the redundant mass in A, which enables transporting only
a subset of mass in A. In this manner, we formulate the
resulting problem as a POT problem with the following
marginal constraints:

IV, A) 2 {T eRY*NTiy =V, T 1y < A}. (5)

It is important to highlight that, unlike the traditional POT
problem, which imposes inequality constraints on both distri-
butions, Eq. (5) introduces equality constraints within V' [48].
This modification explicitly aligns the attribute distribution
with the visual distribution by redistributing weights among

the attributes. Moreover, the concise constraints accelerate
the convergence of POT computations. The POT distance is
then denoted as

dPOT,e(V; .A; C) £ min

TGH(V,A)<T, C>F - 6h‘(’:[‘) ) (6)

where € > 0 is the regularization coefficient, and h(T) =
=Y nm ITmnIn(T), ) is the entropic constraint to accel-
erate the optimization [12], so that the optimal T can be
estimated in a few iterations. We defer the detailed optimiza-
tion procedure of Eq. (6) to Supplementary Material.

4.2. Curriculum Attribute Selection

Upon the optimal transport plan T derived in Eq. (6), we
can define an in-distribution (ID) score for each attribute as
s = [s1,52,...,5N] ", by aggregating the mass transferred
from one attribute to all visual objects:

N M
Sp = E Zm:l Tmm ) (7)

where s,, € [0, 1] is the scaled mass transported that can be
interpreted as the probability of the specific attribute being
in-distribution to the visual objects in V. The underlying
rationale is that the transport cost among ID samples is rela-
tively low. To minimize the total transport cost, ID attributes
in A are allocated a greater proportion of transportation mass
compared to the redundant OOD attributes, in accordance
with the principles of POT.

With the ID scores s at hand, one can simply select N’
attributes with the highest ID scores at a certain stage of
training, e.g., at the beginning or the end. However, this may
suffer from either the inaccurate transport cost due to the
modality gap, or the inaccurate mapping from attributes to
known classes. In light of this, we devise an iterative attribute
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selection strategy that follows the spirit of Curriculum Learn-
ing [4]. Instead of single-time selection, we divide it into n
steps alongside the training, such that only a slightly smaller
set of attributes are to be selected in each step, making the
POT problem easier to solve, and thus benefit the training
stability and attribute selection effectiveness.

Formally, o in Eq. (4) is now rewritten as o = (&) 7. In
each of the 7 selection steps, we select the é amount of the
remaining attributes according to the indices of the top é
ID scores s. The detailed selection method is summarized in
Lines 5 to 8 in Algorithm 1. We denote the resulting selected
attribute embeddings as A € RD*N ', with the ID scores
being s = [s1, 89,...,5n/] " € RN,

4.3. Object Class Prediction

After gaining the selected attributes in each step, we can
learn a mapping matrix W = [w1, w, ..., wg| € RN %K
to assign N attributes to K known object classes, with the
prediction probability computed as

exp(w] A'Tv)

Zgzl exp(w/, A’ Tv) ’

p(Ok|v) = (®)
in which A’ = [a}, d}, ..., a/y.] is the element-wise multi-
plication between s and A where a! = s,ay. The inclusion
of ID scores s constitutes a complementary “soft” filtering
strategy by reweighting selected attributes, whose effective-
ness is clearly shown in Sec. 5.2.

After acquiring the class predictions, we can use a stan-

dard cross-entropy loss to supervise the optimization of both
W and A:

1 M K
Los=—77 > bk logp(Oklvm) ®)

m=1 k=1

where [, is the one-hot label vector for v,,.

4.4. Overall Objective

Training. Our method can be optimized using the below
training objective in an end-to-end fashion:

L = Lcg + Mdpor,e (10)

in which A > 0 is a trade-off coefficient to balance the effect
of the POT loss in Eq. (6). Algorithm | summarizes the
whole training procedure.

Inference. We follow the prior work [78] to detect if a test
visual embedding v contains unknown objects by combining
two probabilities: (a) task relevance—the probability of v
being related to the optimized attribute embeddings (pip),
and (b) unknownness—the probability of v not being from
the known classes (poop), i.€., Punk = PID * POOD:

PID = MaXpeq1,.. N/} o(alv), (11)

poop = 1 —maxyeqy,.. x} P(Oklv), (12)

Algorithm 1: Training Procedure of PASS for OWOD

Input: Visual object embeddings V € R”*M with the
one-hot labels [, initial attribute embeddings
A € RP*N target attribute quantity N’, selection
steps 7, total training epochs E/
Output: Optimal selected attribute embeddings A, mapping
matrix W, attribute ID scores s
1 Initialize: Selected attribute embeddings A = A, selected

attribute quantity N =N, Randomly initialized

W € RY*E attribute redundancy rate o = (%)%,
2 forein (1,2,...,E) do
/* Partial Optimal Transport */
3 Get transport plan T and distance dpor by solving the POT

problem between V and A using Eq. (6) and «;

4 Compute attribute ID scores as s = gTT 1
/* Curriculum Attribute Selection */
s | ifemod [ %5 ] = 0 then )
6 Update selected attribute quantity N «— [ & |;
7 Update A and W by retaining only N columns in A
and N rows in W with top N indices in s;
8 end
/* Object Class Prediction x/

9 Calculate object class prediction p(Ox|v) for V in Eq. (8)
using W, A, and s;

10 Calculate loss Lcg in Eq. (9) using p(Ox|v) and [;

11 Get final loss £ by combining Lcg and dpor in Eq. (10);
12 Update W and A using VL,

13 end

where o(-) is the sigmoid function.

5. Experiment

In this section, we present the experimental evaluations of
our proposed PASS. We start with the experimental setup,
followed by the evaluation results and analysis.

5.1. Experimental Setup

Datasets. As the performance on traditional OWOD bench-
marks [22]—which are based on common everyday object
datasets like COCO [31]—is reported to be highly satu-
rated [78], we use the Real-World Object Detection Bench-
mark established in [78] to evaluate the proposed method.
This benchmark is designed for the few-shot or low-data
setting, recognizing that most real-world applications can-
not gather datasets on the scale of traditional benchmarks.
Specifically, it includes five challenging real-world datasets
as outlined below. (a) Aquatic [10] contains 637 underwater
images of 7 different sea animals, providing useful data for
marine-related applications. (b) Aerial [28] contains 10,000
aerial photos of 20 different structures such as stadiums and
storage containers, supporting satellite imaging and intelli-
gence analysis. (¢) Game [10] contains 1575 game screen-
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shots with 59 different avatars, serving as a benchmark for
testing on synthetic data. (d) Medical [10] consists of 182
hand X-rays to identify 12 different bones, offering insights
for medical applications such as detecting arthritis, fractures,
and structural issues in hands. (e) Surgery [5] is composed of
1829 images of 13 different surgical instruments, captured
under neurosurgical microscopes.

Evaluation Protocol. For each dataset, classes were
evenly divided into two subsets: one containing the most
common classes and the other containing the least common
classes. The evaluation follows OWOD protocols and is con-
ducted in two tasks. In Task 1, the model is provided with the
most common classes as known (K), while the least common
classes remain unknown (U), and the model is expected to
detect both known and unknown object classes. In Task 2,
in addition to the previously known (PK) classes, the least
common classes are introduced as currently known (CK)
classes. The model’s performance is then evaluated on both
PK and CK classes.

The mean average precision (mAP) is used to evaluate
the performance in known classes (K-mAP). To gain deeper
insights into the quality of continual learning in OWOD,
mAP is further divided to respectively evaluate PK and CK
classes (PK-mAP and CK-mAP) as discussed above. Ad-
ditionally, we also report the mean average precision for
unknown objects (U-mAP).

Implementation Details. Our approach is based on
a frozen CLIP-pretrained OWL-ViT model (B/16 and
L/14) [41], which has been fine-tuned for detection on a
federated dataset combining Objects365 [52] and Visual
Genome [24]. We leverage this frozen model, focusing on
the construction of optimal attribute embeddings Aanda
mapping matrix W to enhance the detection performance
for both known and unknown object classes. For training, we
use € = 0.01 in Eq. (6). For fair comparison with [78], N’ is
determined so that the average number of selected attributes
per known class is 25. 7 is default to be 4 for all datasets.
Other hyperparameters, including training epochs and learn-
ing rate, are searched based on the validation mAP on known
classes following [78]. The experiments were carried out on
an NVIDIA RTX A6000 GPU. More implementation details
are provided in Supplementary Material.

5.2. Ablation Study

We ablate our proposed PASS to evaluate the effectiveness
of each proposed module. As shown in Tab. 1, the ablation
study primarily focuses on the POT distance loss (dpor) in
Eq. (6), the attribute selection method in Sec. 4.2, and the
attribute ID score (s) reweighting strategy in Eq. (8).

Effect of POT loss. The minimization of POT distance
(dpot) constitutes an important ingredient of our proposed
PASS. It explicitly optimizes the attribute embeddings to

Dataset (—) ‘ Aquatic ‘ Surgery
U K | U K

B/16 Backbone:

PASS Full (Ours) 52 434 | 143 15.6

PASS w/o Minimizing dpor 32 228 | 3.0 55
PASS w/o Attribute Selection | 4.8 344 | 8.1 12.6

PASS w/o s Reweighting 45 413|106 11.9
L/14 Backbone:
PASS Full (Ours) 21.7 539 | 16.6 45.6

PASS w/o Minimizing dpor 10.1 182 | 8.0 14.1
PASS w/o Attribute Selection | 15.5 34.1 | 152 43.6
PASS w/o s Reweighting 183 422 | 134 400

Table 1. Ablation study of PASS. We report U-mAP (U) and K-
mAP (K) on two representative datasets: Aquatic and Surgery,
with Task 1 evaluation in the 100-shot regime. Best results are
highlighted in each column. More ablation study results can be
found in Supplementary Material.

align closely with the corresponding visual object embed-
dings through optimal assignment, effectively reducing the
modality gap and improving the generalizability of attributes.
This enables the model to detect both known and unknown
object classes. As shown in Tab. 1, performance drops signif-
icantly without minimizing dpor (setting A = 0 in Eq. (10)),
particularly in the detection of unknown objects. While the
cross-entropy loss in Eq. (9) helps maintain performance
on known objects, relying solely on the classification loss
leads to poor generalization of the learned attributes for the
unknown objects.

Effect of Attribute Selection. Effective attribute selection
helps retain a streamlined set of in-distribution attributes that
are most relevant to the specific task. While attribute selec-
tion has a less pronounced impact on performance compared
to dpor, since POT already performs an initial filtering by
assigning lower weights to out-of-distribution attributes, it
still provides benefits. Specifically, it helps reduce the noise
in the attribute pool, which can enhance detection perfor-
mance. Additionally, keeping a smaller attribute set is more
computationally efficient. We provide further analysis on the
advantage of the proposed curriculum attribute selection in
Supplementary Material.

Effect of Attribute ID Score Reweighting. In addition
to the “hard” attribute selection, reweighting object class
predictions based on the attribute ID score—obtained from
the POT transport plan—provides a complementary ““soft”
filtering strategy. This approach allows the final selected
attributes to contribute differently, based on their relevance
to the specific task, rather than being treated equally. As
demonstrated in Tab. 1, this fine-grained use of selected
attributes further enhances the detection performance.
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Dataset (—) ‘ Aquatic H Aerial H Game H Medical H Surgery H Overall
Task ID (—) Task 1 Task 2 Task 1 Task 2 Task 1 Task 2 ‘ Task 1 Task 2 Task 1 Task 2 ‘ Task 1 Task 2
U K |PK CK U K PK CK| U K PK CK 18] K PK CK|| U K PK CK U K PK CK
B/16 Backbone:
BASE-ZS+GT' [29.8 45.0(45.0 36.7 | 1.3 57 57 14150 04 | 04 0.1 |05 00|00 0156 15 14 03 |[104 105|105 7.7
BASE-ZS 6.2 450|450 36709 57|57 14157 04 | 04 0.1 |02 00 ] 00 01|14 15 14 03 |49 105|105 7.7
BASE-ZS+IN  |26.5 45.145.1 36.7| 19 57|57 14|24 03|03 00|06 00|00 01|17 14|10 03] 66 105|104 7.7
BASE-ZS+LLM |24.7 45.1|45.1 365 |14 57|57 14151 04 | 04 0.1 |06 00| 00 0189 15 1.3 03 102 105105 7.7
BASE-FS 7.1 41.1|41.1 319 | 1.2 104|10.1 4.0 |160 46 | 48 39 |06 6.1 | 6.1 33|13 119|113 109 | 52 148|147 10.8
FOMO [78] 35 438|44.1 40.8 | 09 12.0| 126 54 133 38 | 44 4.1 |21 64 | 55 11.5)|6.1 127129 11.0| 52 157|159 146
PASS (Ours) 5.2 434|432 46.6| 19 140|160 7.0 ||21.5 100| 7.7 9.0 | 49 84 | 6.8 12.1|/143 156 | 13.1 147 | 9.6 183|174 179
A +1.7 -04(-0.9 +58 |+1.0 +2.0| +3.4 +1.6||+8.2 +6.2 | +3.3 +4.9 | +2.8 +2.0 | +1.3 +0.6|+8.2 +2.9 | +0.2 +3.7 | +4.4 +2.5 | +1.5 +2.3
L/14 Backbone:
BASE-ZS+GT' [34.8 36.0/36.0 423 1.0 79 72 08124 09 | 0.8 03 |24 02| 02 03|24 02 26 13 [106 90 | 94 90
BASE-ZS 0.7 359|360 423 9.1 82| 72 08|68 09|08 03|00 02|02 0336 29 |26 13|41 96|94 90
BASE-ZS+IN  |19.6 35.8/35.8 41.8| 23 72| 69 09158 09 | 08 0309 01|01 02§31 21|19 1.1 |83 92|91 88
BASE-ZS+LLM|24.7 358|358 422 |06 76| 72 0.8 |125 09 | 0.8 02 | 1.6 0.1 0.1 02126 2.6 | 25 1.3 {104 94 | 93 9.0
BASE-FS 2.4 436|429 428 | 9.7 237,219 13.0| 82 104|102 134 | 1.1 232 |21.7 242||3.6 260|250 74 |50 254|243 202
FOMO [78] 18.2 50.1148.1 47.1 | 6.0 25.3| 23.7 16.0/(304 10.7| 99 11.2| 94 21.8|19.9 34.6|12.0 29.0 | 289 85 |152 274 |26.1 235
PASS (Ours) 21.7 53.9/56.6 58.3 | 84 34.2|36.1 20.2|/36.0 24.3 | 23.7 263 |13.1 34.3|30.0 32.0|16.6 45.6 | 479 433 |19.1 38.5 | 38.9 36.0
A +3.5 +3.8|+8.5 +11.2|+2.4 +8.9|+12.4 +4.2||+5.6 +13.6|+13.8 +15.1| +3.7 +12.5|+10.1 -2.6 | +4.6 +16.6|+19.0 +34.8| +3.9 +11.1|+12.8 +12.5

Table 2. OWOD results on the five real-world object detection datasets. The evaluation on each dataset is divided into two tasks, and we
report U-, K-mAP for Task 1, and PK-, CK-mAP for Task 2, which are introduced in Sec. 5.1. BASE-FS, FOMO [78], and our proposed
PASS are evaluated in the 100-shot regime, whereas the results of different few-shot regimes are provided in Supplementary Material. 'GT
baselines leverage ground-truth class names to detect unknown objects, functioning within the open-vocabulary object detection framework
and providing an upper bound for text-conditioned (zero-shot) baselines. Best overall results are highlighted in each column.

5.3. Main Results

We perform extensive evaluations of our proposed PASS
method, comparing it with existing state-of-the-art ap-
proaches (SOTAs). Additionally, we present qualitative re-
sults that showcase the detection outcomes along with the
most relevant attributes used in the process. More experi-
mental results can also be found in Supplementary Material.

Comparison with State of the Arts. We compare our
proposed PASS with FOMO [78] and the strong baselines
established therein, by adapting the Open-Vocabulary Object
Detection (OVOD) methods [41] that also use foundation
models to the OWOD setting. As listed in Tab. 2, BASE-ZS
uses a generic “object” prompt for unknown objects [39],
while BASE-ZS+IN utilizes all ImageNet class names (with
the known classes removed) as the unknown classes propos-
als, and BASE-ZS+LLM employs class names predicted by
an LLM (based on the known classes) for detecting potential
unknown objects. On the other hand, BASE-ZS+GT uses the
ground-truth class names for unknown objects, serving as
the upper bound of the OVOD methods by assuming access
to all unknown class names. BASE-FS utilizes image exem-
plars to produce vision-derived object embeddings, which
are averaged per class to form class embeddings. Then a
general prompt, such as “a photo of an object”, is
applied to help identify unknown objects.

As can be seen in Tab. 2, our proposed PASS consistently
outperforms FOMO by a significant margin and achieves per-
formance that is very close to the OVOD upper bound, even

when using the B/16 backbone. In particular, our improve-
ment is especially notable in known classes, as reflected in
the K-, PK-, and CK-mAP metrics. This can be attributed
to the robust attribute selection and optimization capabil-
ities of our proposed PASS framework, which effectively
curates a set of accurate and effective attributes to enhance
object detection. On the other hand, PASS also demonstrates
a significant performance boost in unknown classes as mea-
sured by the U-mAP metric. This suggests that the attributes
learned by PASS are not only effective for known classes
during training but also highly generalizable to unknown
objects during evaluation.

Visualizations. For further comprehension of the effec-
tiveness of our proposed PASS in detecting open world ob-
jects, we present several qualitative results for each dataset
in Fig. 3. When comparing the detection results between
FOMO (second row) and our proposed PASS (third row),
PASS consistently demonstrates improved detection perfor-
mance, with results that are more closely aligned with the
ground truth (first row). In particular, FOMO sometimes
incorrectly classifies known objects as unknown, or vice
versa, suggesting that the learned attributes might not be
sufficiently accurate to reliably characterize known objects.
Furthermore, FOMO occasionally yields significantly fewer
detection results in certain domains, such as medical datasets.
This suggests that the learned attributes might not adequately
capture the full range of potentially useful features necessary
for detecting unknown objects. In contrast, PASS delivers
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Aquatic

Top attributes for detected
known classes:

* Shape is truncate tail

* Shape is flexible

* Environment is tide pool

Top attributes for detected

Aerial

Top attributes for detected
known classes:

* Shape is stationary

* Shape is converging

* Behavior is tournament

Top attributes for detected

Game

Top attributes for detected
known classes:

* Material is calcium

* Appearance is visible

joints between bones
e Color is veins

Top attributes for detected

Medical

Top attributes for detected
known classes:

* Shape is straight

* Shape is convex

* Shape is knobby

Top attributes for detected

Surgery

Top attributes for detected

known classes:

* Behavior is handle

Features is gripping surface

* Appearance is presence
of grooves

unknown classes: unknown classes:

unknown classes:

Top attributes for detected

unknown classes: unknown classes:

* Shape is dorsal fin shape * Appearance is distinctive * Appearance is edges * Shape is cracked * Material is cutting edge

* Texture is ridged roof design * Shape is smooth * Shape is straight * Shape is pointed tips

* Shape is adipose fin * Context is court lines e Texture is striped * Features is thumb * Appearance is shiny
shape * Shape is stationary metacarpal

Figure 3. Qualitative results on the five real-world datasets. First Row: images in each dataset with ground truth bounding boxes and class
names. Second Row: Detection results using FOMO [78]. Third Row: Detection results using our proposed PASS. We use green and
yellow boxes to indicate known and unknown objects, respectively. Bottom Rows: The top three attributes that are activated for detecting

known and unknown classes in each image using our proposed PASS.

superior detection results due to the more accurate attributes
learned during training. These attributes not only provide
a strong characterization of known object classes but also
demonstrate high generalizability to unknown classes. Fur-
thermore, as illustrated in the bottom two rows of Fig. 3,
PASS effectively leverages meaningful attributes to identify
both known and unknown objects. For example, it uses the at-
tribute “shape is dorsal fin shape” to detect an
unknown fish species recognized for its large fin.

6. Conclusion

In this paper, we propose an efficient end-to-end approach to
select a compact set of representative attributes tailored to de-
tect open-world objects, including both known and unknown

classes. Specifically, we formulate the attribute selection and
optimization process as a Partial Optimal Transport (POT)
problem, where the most relevant attributes emerge with
the highest transported mass. Additionally, we introduce a
curriculum-based attribute selection strategy that gradually
refines the attribute subset during training, significantly en-
hancing training stability and selection effectiveness. We
evaluate our approach on challenging real-world datasets,
where it achieves superior performance that surpasses current
state-of-the-art methods by a large margin.

In future work, we aim to expand our method to incor-
porate hierarchical information within attribute taxonomies.
This enhancement will allow for a more fine-grained under-
standing of the detection process by leveraging attributes at
varying levels of granularity.
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