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Robust Multi-View Clustering with Noisy
Correspondence

Yuan Sun, Yang Qin, Yongxiang Li, Dezhong Peng, Xi Peng, Peng Hu

Abstract—Deep multi-view clustering leverages deep neural
networks to achieve promising performance, but almost all
existing methods implicitly assume that all views are aligned
correctly. This assumption is unrealistic in many real-world
scenarios, where noise, occlusion, or sensor differences can
inevitably cause misaligned data. Based on this observation,
we reveal and study a practical but understudied problem in
multi-view clustering (MVC), i.e., noisy correspondence (NC).
Considering this problem, we argue that the main challenge
is to prevent the model from overfiting NC. To this end,
we propose a novel Robust Multi-view Clustering with Noisy
Correspondence (RMCNC) method, which alleviates the influence
of the misaligned pairs from multi-view data. To be specific,
we first compute a united probability with all positive pairs
to learn cross-view alignment consistency, thereby alleviating
the adverse impact of the individual false positives. To further
mitigate the overfitting problem, we propose a noise-tolerance
multi-view contrastive loss that avoids overemphasizing noisy
data. Moreover, RMCNC is a unified framework, which can deal
with both partially view-aligned and NC problems in multi-view
clustering. To the best of our knowledge, it could be the first study
on NC in multi-view clustering. The experimental results on eight
benchmark datasets indicate our RMCNC achieves competitive
performance and robustness. The code of RMCNC is released at
https://github.com/sunyuan-cs/2024-TKDE-RMCNC.

Index Terms—Noisy correspondence, multi-view clustering,
contrastive learning, partially view-aligned

I. INTRODUCTION

With the quick advancement of information technology,
data could typically be gathered from multiple views or
modalities, such as images, texts, and audio, which are called
multi-view data [1-3]. Different from single-view data [4-6],
multi-view data could provide richer and more comprehen-
sive descriptions of the targets from different views [7, 8],
which has attracted more and more attention from academic
and industrial communities. To comprehensively understand
these data, multi-view clustering (MVC) [9] is an effective
way to handle and analyze multi-view data, which aims to
group the unlabeled multi-view instances into clusters, where
each cluster has similar semantics [10-13]. Thanks to its
powerful data-handling ability, it has been successfully applied
in various applications, such as data mining and knowledge
discovery [14, 15].
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Fig. 1: Toy examples of different view alignments in multi-
view data. Each shape represents an instance, each color
denotes a category, and the line indicates the correspondence
between different views. The question mark means that the
corresponding correspondence is uncertain. (a) fully view-
aligned problem (FVP), where all views are perfectly aligned;
(b) partially view-aligned problem (PVP), where some known
data are view-aligned and some are not; (c) fully unpaired
problem (FUP), where no data are view-aligned; (d) noisy cor-
respondence problem (NCP), where the alignment information
is noisy and unknown.

Although existing MVC methods [16-18] have achieved
satisfactory progress, almost all of them implicitly assume all
views are correctly aligned, as shown in Figure 1(a). However,
this assumption is impractical in many real scenarios, where
some unaligned data may be misaligned as paired data due
to unavoidable noise, occlusion, or sensor faults. Recently,
to relax the assumption, some works revealed and studied a
novel partially view-aligned problem (PVP) [19], where multi-
view data consist of a known portion of aligned data and a
portion of misaligned data, as shown in Figure 1(b). Although
PVP-oriented methods could alleviate the requirement for
well-aligned data, it is still time- and cost-prohibitive to
obtain a considerable portion of well-aligned multi-view data,
especially in healthcare and manufacturing. Moreover, some
works investigated a challenging fully unaligned problem
(FUP) [20], which means that all views are unaligned in multi-
view data, as shown in Figure 1(c). Although these methods
do not require any well-aligned data, they should align all
view-unaligned data across different views [21, 22], leading
to extremely high computational complexity, especially for
large-scale data. In addition to high computational complexity,
learning from fully view-unaligned data may have no gain
or even worse performance than a single view since it is
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Fig. 2: The framework of the proposed RMCNC. View-specific representations are first learned from the two-view raw features
through the neural network. Then, according to the alignment relationships of the cross-view positive and negative pairs, we
compute the united probability with the positive pairs. Finally, we propose noise-tolerance multi-view contrastive loss to prevent

overemphasizing noisy data.

hard to correctly align different views without any cross-view
correspondence. Thus, FUP is too pathological to be practical
in real-world scenarios. In practice, aligned and misaligned
data are inextricably involved with each other in multi-view
data. That is to say, some unaligned data may be mistakenly
treated as aligned ones in multi-view data, thereby leading
to the noisy correspondence problem (NCP) [23]. Obviously,
NCP will remarkably degrade the clustering performance due
to its false guidance, which however is less touched so far.

To tackle the practical and challenging problem, we propose
a novel Robust Multi-View Clustering with Noisy Correspon-
dence method (RMCNC) to robustly learn representations
from noisy views, whose framework is shown in Figure 2.
Specifically, inspired by contrastive learning [24-26], we
first construct the positive and negative pairs across distinct
views by using noisy alignments. However, we observe that
NC causes traditional contrastive learning methods to overfit
noisy guidance (i.e., false positives and false negatives) as
shown in Figure 3. To overcome this challenge, we present
maximizing a united probability of all positive pairs instead of
the individual probability of each positive, thereby mitigating
the noise disturbance brought by NC in multi-view learning.
Although the united probability could mitigate the overfitting
problem, widely-used contrastive losses (e.g., InfoNCE [27])
could overemphasize the hard pairs and still lead to overfitting
NC, as shown in Figures 3 and 5. Finally, to alleviate the
overemphasizing issue, we propose a noise-tolerance multi-
view contrastive learning loss to reduce the focus on noisy
pairs, thus boosting the robustness against NC. In brief, the
main contributions of this paper are summarized as follows:

o We propose a new problem setting for MVC with NC,
which relaxes the strong assumption of view alignment
in multi-view data, embracing more practicality. To the
best of our knowledge, this is the first work to achieve
robust MVC under both NCP and PVP.

o We present maximizing the united probability to exploit
the cross-view alignment consistency, thereby efficiently
alleviating the adverse impact of the individual false
positives.

o We develop a noise-tolerance multi-view contrastive loss
that reduces the focus on noisy pairs and alleviates
the overfitting problems, thus enhancing the robustness
against NC.

¢ We provide a robustness analysis for the proposed
loss against NC. Moreover, various experiments on the
widely-used datasets validate the superiority of RMCNC.

II. RELATED WORK

In this section, we briefly introduce some recent related
works in MVC and learning with noisy correspondence.

A. Multi-View Clustering

In recent years, MVC [28, 29] has received widespread
attention and has become a hot topic. In addition, to overcome
the incomplete problem of multi-view data, a large number of
incomplete MVC methods [30] have been proposed. Although
these methods [31] have achieved pleasing performance, al-
most all of them heavily depend on an implicit view-alignment
assumption [9, 32, 33], i.e., all views are aligned correctly.
In real scenarios, this assumption is easily destroyed due to
unavoidable noise, occlusion, or sensor faults, thus leading
to PVP [19] and FUP [20]. Partially view-aligned clustering
(PVC) [19] is the first attempt to reveal this practical and chal-
lenging PVP. PVC proposes a feasible solution that redefines
the Hungarian algorithm to achieve instance alignment across
views. However, such instance-level alignment has a high
computational complexity O(n?), resulting in the inability to
handle large-scale data. Multi-view contrastive learning with
noise-robust loss (MvCLN) [25] considers that the essence
of clustering is a one-to-many mapping, and further reveals
that category-level alignment possesses higher accessibility.
To this end, MvCLN proposes establishing category-level
alignment under the contrastive learning framework. Although
these methods could alleviate the requirement for well-aligned
data, it is still expensive or even impossible to collect a
considerable portion of well-aligned multi-view data. Another
challenging problem (i.e., FUP) assumes that all views are
unaligned in multi-view data. MVC for unknown mapping
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relationships (MVC-UM) [20] makes the first attempt to
handle FUP, which adopts the graph-based coupling term to
excavate the consistency information for all views. To explore
the high-order correlations of all views, T-UMC [22] proposes
a unified tensor framework that utilizes local structures and
data coupling. UIMC [21] studies a more challenging real-
world scenario (i.e., the case of FUP and incomplete multi-
view data), which proposes a joint framework to fill and
realign feature data. However, FUP-oriented methods always
have extremely high computational complexity due to aligning
different views without any cross-view correspondence. In
conclusion, PVP and FUP are respectively too ideal and
pathological to be practical in real-world scenarios.

In contrast to PVC and FUC, NCP considers a more prac-
tical problem, where misaligned data is unknown and occurs
randomly in multi-view data. Since the adverse influence of
the misaligned data, NC could cause traditional contrastive
learning methods to overfit noisy guidance, thereby leading to
degraded clustering performance. To prevent the model from
overfitting NC, we propose a robust-tolerance MVC method
to avoid overemphasizing noisy data without all the bells and
whistles.

B. Learning with Noisy Correspondence

As a new problem in the field of cross-modal retrieval,
noisy correspondence is a special kind of noisy label, where
mismatched pairs are incorrectly considered as matched pairs.
Huang et al. [23] first reveal and study the noisy correlation
problem (NCP) in cross-modal matching and propose a noisy
correspondence rectifier (NCR), which can rectify matching
relationships to achieve robust cross-modal retrieval. However,
due to the noise effect, it may make the supervised information
unreliable/uncertain, which significantly degrades the perfor-
mance. To overcome the issue, Qin al et. [34] propose deep
evidential cross-modal learning (DECL) to accurately estimate
the uncertainty caused by noise, thereby enhancing the robust-
ness and reliability. In addition, Hu et al. provide an unbiased
estimate for cross-modal retrieval risk and derive robust cross-
modal learning (RCL) [35] to endow cross-modal methods
with robustness against NCP. To prevent the confirmation
bias problem, Yang et al. propose bidirectional cross-modal
similarity consistency (BiCro) [36] to estimate soft labels for
image-text data with noisy correspondence, which can reflect
true correspondence degree. In general, except cross-modal
retrieval tasks [37], more and more other tasks with NC have
also been widely studied, which includes audio-visual action
recognition [38], video reasoning [39], graph matching [40],
and person re-identification [41-43].

Although cross-modal retrieval with noisy correspondence
has been studied recently, this problem has not been touched
on in MVC. Such multi-view data with noisy correspondence
will significantly decrease the clustering performance. To han-
dle the practical yet challenging problem in MVC, we propose
a novel RMCNC method, which makes the first attempt to
perform MVC with NC.
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Fig. 3: Performance of different loss functions conducted on
the Animal with 40% noise.

III. METHODOLOGY

In this section, we present a robust MVC with noisy
correspondence (RMCNC) method to handle both PVP and
NCP. We first formally introduce the formulation of PVP and
NCP. Then, we give a detailed description of the proposed
RMCNLC. Finally, we present some theoretical analysis for our
noise-tolerance clustering loss.

A. Problem Formulation

v 1%

Let {X(v)}vzl = _
multi-view dataset with N instances observed fromvl_/'1 views,
where X (") denotes the data from v-th view, wl(-v) represents
the ¢-th sample from the v-th view. For clarity, we define
correspondence label L = {l[j}'i,j = 1,2,--- ,N;v,u =
1,2,--- )V} to represent correspondences across different
views, where [J* is the correspondence between a:z(-v) and
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xg-“). In the multi-view dataset, it implicitly assumes that each
view from the same instance is aligned, denoted as [J* = 1
for the v-th and wu-th views from the ¢-th instance, unaligned
otherwise, denoted as I} = 0 (i # j) for ") and :c;u) from
different instances. However, in real-world scenarios, the views
of an instance may be misaligned due to the ubiquitous noise
(i.e., NCP), where [J* = 1 may be wrong. Mathematically,

we give the general definition for NCP as follows.

Definition 1 (NCP): The given multi-view dataset
{X (1))}1‘;/:1 contains the view-aligned and view-misaligned
data, meaning we do not know whether I = 1 is true or
false for any pair. Mathematically, NCP could be formulated
as

vV Vv
Y'Y (xg”%wf.“)) <V(V-1),¥e[l,N], (1)

v uFv

where Q) is an alignment indicator, Q(a,b) =1 if two cross-
view samples (i.e., a and b) come from the same instance, and
Q(a,b) = 0 otherwise.
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B. Robust Multi-view Learning with Noisy Correspondence

For multi-view data, MVC aims to learn discriminative and
consistent representations across different views, thereby facil-
itating intra-cluster compactness while inter-cluster scattering.
Recently, inspired by the great success achieved by contrastive
learning, it has been applied to MVC and achieved promising
performance [24-26]. However, almost all of these methods
implicitly assume that different views are perfectly aligned
while ignoring the presence of ubiquitous noise, which could
cause them to overfit false positives as shown in Figure 3.
From the figure, one could observe that typical contrastive
learning losses (e.g., InfoNCE) suffer from overfitting, which
is manifested as an initial increase followed by a decrease
in performance, due to overemphasis on false positives. In
contrast, some robust losses (e.g., MAE and SURE) could
achieve stable performance, indicating that robust loss could
alleviate the overfitting problem. However, we also observe
that the robust losses still suffer from underfitting issues,
resulting in lower performance than the best of InfoNCE.
Furthermore, some robust MVC methods (e.g., MVCLN and
SURE) have been proposed to handle PVP, however, they
still cannot conquer the overfitting and underfitting problems
caused by NC. To address the problems, we propose a novel
noise-tolerance multi-view contrastive learning loss to improve
the robustness against NC.

First, we adopt multiple view-specific neural networks
hy(+,0,) to project different views into the specific latent
spaces (i.e., {ZV}Y_,, where ©, is the parameters of the
corresponding networks. To measure cross-view similarities,
we calculate the cosine similarity between two features from
different views as follows:

oy ZE)T
S0 = i @
where z? and z;’ are the view-specific representations. Thus,
we could define the probability that two cross-view samples
belong to the same instance as follows:

exp(S(z;’,z;)/r)

P =
SO CEDL

Inspired by contrastive learning [27, 44], we could utilize the
widely-used contrastive loss InfoNCE for MVC as follows:

3)

exp(5(z2=1)/7)
(S(z;’,z;‘)/v') ’ (4)

L7 = —log
N
Zj:l exp

where 7 denotes a temperature parameter [10]. Minimizing
Equation (4) is equivalent to maximizing the agreement be-
tween positive pairs while minimizing the agreement between
negative pairs, thus facilitating learning discriminative rep-
resentations. Like cross-entropy, InfoNCE tends to focus on
hard pairs, which hardly rely on well-labeled data. However,
based on the memorization effect of DNN [45, 46], the hard
pairs probably are false positives, thus misleading the model
to optimize in the wrong direction, i.e., overfitting problem.
To alleviate the overfitting problem of InfoNCE, inspired
by [47, 48], we could adopt robust MAE loss to mitigate

the impact of noise. Thus, Equation (4) could be rewritten
as follows:

1 N
Lt = N Z \lij = i &)
j=1

where | - | denotes the absolute value. From Equation (5), we
could observe that MAE treats each sample equally, thereby
leading to theoretical robustness against noisy labels [35]. This
robustness is also demonstrated in Figure 3, wherein MAE
achieves promising robustness against NC. Although this equal
treatment brings robustness, it inevitably loses focus on infor-
mation pairs, thus resulting in an underfitting issue and per-
formance degradation [49]. In general, since InfoNCE mainly
focuses on the hard samples, it easily leads to overfitting NC.
Hence, InfoNCE is more suitable for clean samples. MAE
treats each sample equally to enhance robustness. However,
MAE lacks the ability to handle the more challenging samples,
thereby leading to underfiting and poor performance. Although
some PVP-oriented methods (e.g., MvCLN and SURE) have
achieved promising results with partially aligned views, they
also will face overfitting or underfitting problems due to
unknown noisy pairs.

To mitigate the noise disturbance brought by NC in multi-
view data, we propose a novel robust multi-view clustering
method with noisy correspondence. Specifically, we first com-
pute a united probability with all positive pairs to learn cross-
view alignment consistency, thereby alleviating the adverse
impact of the individual false positives. The united probability
can be formulated as

N N
Giu — Z Z ZU exp (S(zfa z;'t)/T)7
i=1j=1

N N (6)

G = Z | > exp(S(zf.20)/7).

To further mitigate the overfitting problem, we propose a
noise-tolerance multi-view contrastive loss to avoid overem-
phasizing noisy pairs, thereby enhancing robustness against
misaligned pairs. Mathematically, we adopt an exponential loss
to formulate the problem as
_ v\ q
oy 2T L ey
q
G

. a (M)
- (- (eves) )

where ¢ > 0 is a regulatory factor. For the ¢ value of the
loss, we can choose it based on the robustness analysis and
parametric analysis. The overall loss function of RMCNC can
be formulated as:

vV Vv
L=y Yy ®

v=1 u#v
Due to limited computing resources, we cannot employ the
whole training data for training. Therefore, we conduct Monte
Carlo sampling to relax the whole training set as batch data.
Intuitively, our loss mainly uses the parameter q to seek
a balance between InfoNCE and MAE, which could focus
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less on hard samples than InfoNCE and more on informa-
tive samples than MAE, thus mitigating the overfitting and
underfitting problems. Specifically, we plot the loss curves
of InfoNCE, MAE, and our RMCNC to visually illustrate
the robustness of our method in Figure 4. From the figure,
one could see that RMCNC reduces the relative loss for hard
samples, which are often very likely to be noisy ones, when
0 < g < 1, thus making the model focus more on clean data
than noisy ones. Compared to MAE, our RMCNC could treat
each sample discriminatively instead of equal treatment, thus
focusing more on informative samples. More specifically, our
RMCNC could pay more attention to the hard samples than
MAE when 0 < ¢ < 1, while less attention to the easy samples
when ¢ > 1. Thanks to this multi-granularity attention, our
RMCNC could alleviate the overemphasis on hard samples
and focus more on easy samples, thus embracing robustness
against NC as shown in Figure 3.
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Fig. 4: Comparison between InfoNCE, MAE, and RMCNC.

C. Robustness Analysis

To intuitively study the robustness of our £,, we conduct
the robustness analysis on gradient qualitatively. Given the
united probability Py, the gradient of our robust loss L, is
calculated as:

- % — _(pvu)(a—1)

VL, = opvT (PYY) €))
From Equation (9), it could be seen that our gradient is still
regulated by the factor ¢ to exhibit different behaviors as
shown in Figure 5(a). When ¢ (¢ > 1) is larger, £, will
produce a larger magnitude of the gradient (i.e., |V|) for easy
samples than hard ones, which makes the model focus more
on clean data than noisy ones, thus boosting the robustness
against NC.

On the contrary, £, with small ¢ could focus more on the
hard samples than MAE to alleviate the underfitting problem,
while less than InfoNCE to handle the overfitting problem. To
further explore £,, we exploit the negative-log-likelihood loss
Liog of PY™ as a comparison. Given the united probability
Py, the gradient of L, is

0L1og 1
Viios = Gy =~ pr
Markedly, £, is equivalent to £;,, when g approaches zero. As
shown in Figure 5(b), the magnitude of the gradient produced

(10)

by L4 is greater for hard samples than that of £,. That
is to say, the lower the united probability, the smaller the
magnitude of our RMCNC. Therefore, it indicates that our loss
could not overemphasize the hard samples, thus embracing
more robustness than L;,,. Besides, as shown in Figure 3,
the performance of our RMCNC gradually increases and then
tends to be stable without performance degradation as the
epoch increases, which indicates that RMCNC has robustness
against the noise disturbance brought by NC.
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Fig. 5: The behavior of V with different ¢ and Py".

Algorithm 1 RMCNC for MVC with noisy correspondence

Input: multi-view dataset X (*); networks h, (X", ©,);
batch size M; training epoch B; temperature parameter T;
parameter q.

Initialize: Initialize the parameters O;
[ Tra i ng R

while epoch < B do
for batch =1 to M do
M

Sample a mini-batch {wﬁ”)}

,:1'
(v)

M
Encode {wl

as the representations {z?’) .
0= . . i=1
Construct posmife and negative pairs through [;;. '
Obtain the overall loss £, with Equation (8).

Minimize £, to compute ©, by gradient descent.

end

end

) T L ]

for batch =1 to M do

Obtain the representations from each batch through
1 2

hl(.’BZ( )7@1) and hQ(.’BZ( ),@2).

Calculate the Euclidean distance D of the cross-view

representations.

end

or mgl) in X1 do

Realign multi-view data by the smallest distances.

Obtain the common representation by Concatenating the

corresponding representations.

Yy

end
Performing k-means clustering for the common representation.
Output: Clustering results.

IV. EXPERIMENTS

In this section, we evaluate the performance of our RM-
CNC on four widely-used benchmark datasets and compare it
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TABLE I: The partially view-alignend clustering results (%) on four benchmarks.

Methods Scene-15 Caltech-101 Animal NoisyMNIST
ACC | NMI | ARI | ACC | NMI | ARI | ACC | NMI | ARI | ACC | NMI | ARI
CCA (NeurIPS’03) 3273 | 34.24 | 18.80 | 20.06 | 41.56 | 16.62 | 15.34 | 9.72 | 8.24 | 34.46 | 29.83 | 17.89
KCCA (JMLR’02) 33.09 | 31.43 | 1635 | 12.57 | 31.36 | 7.65 | 1472 | 9.55 | 7.81 | 26.57 | 18.19 | 10.55
DCCA (ICML’13) 34.27 | 36.55 | 18.83 | 12.52 | 32.13 | 7.63 | 1493 | 10.44 | 9.11 | 29.22 | 20.24 | 11.08
DCCAE (ICML’15) 33.62 | 36.56 | 18.54 | 11.75 | 30.54 | 6.60 | 21.72 | 25.15 | 9.22 | 27.61 | 19.45 | 10.00
LMSC (CVPR’17) 26.27 | 20.45 | 10.93 | 21.54 | 40.26 | 15.51 | 33.41 | 28.44 | 15.20 / / /
MvC-DMF (AAAT’'17) | 28.49 | 24.31 | 11.22 | 9.54 | 23.41 | 3.84 | 35.30 | 27.38 | 14.96 | 27.34 | 22.96 | 6.85
SwMC (IJCAT’17) 31.03 | 30.39 | 12.94 | 19.03 | 22.75 | 3.73 | 34.22 | 31.01 | 16.32 / / /
BMVC (TPAMI'18) 36.81 | 36.55 | 20.20 | 12.13 | 31.33 | 7.11 | 35.62 | 27.24 | 15.01 | 28.47 | 24.69 | 14.19
AE2-Nets (CVPR’19) | 28.56 | 26.58 | 12.96 | 10.45 | 29.51 | 7.90 | 420 | 3.30 | 0.00 | 38.25 | 34.32 | 22.02
PVC (NeurIPS’20) 37.88 | 39.12 | 20.63 | 22.11 | 47.82 | 17.98 | 3.80 | 0.10 | 0.30 | 81.84 | 82.29 | 82.03
MvCLN (CVPR’21) 38.53 | 39.90 | 24.26 | 30.09 | 43.07 | 38.34 | 26.18 | 40.19 | 19.71 | 91.05 | 84.15 | 83.56
T-UMC (TCYB’22) 35.77 | 34.41 | 24.27 | 26.31 | 48.32 | 33.47 | 30.62 | 37.17 | 20.54 / / /
UIMC (TNNLS22) 31.31 | 31.92 | 23.54 | 26.06 | 49.03 | 30.74 | 30.62 | 37.21 | 19.92 / / /
SURE (TPAMI’23) 40.32 | 40.33 | 23.08 | 30.87 | 44.25 | 39.89 | 27.74 | 40.83 | 19.91 | 95.17 | 88.24 | 89.72
Our RMCNC 40.51 | 41.13 | 24.55 | 33.92 | 48.10 | 45.33 | 44.43 | 49.48 | 30.41 | 95.53 | 88.76 | 90.43

with 14 state-of-the-art MVC methods. For a comprehensive
evaluation, we employ ACC, NMI, and ARI as the evaluation
metrics to measure the clustering performance. This section
is organized as follows. First, we briefly introduce the ten
datasets that we use in our experiments. Then we elaborate on
the experimental settings, including the hyper-parameters, the
evaluation scenarios, etc. Next, we present the comparative
results and the ablation studies. Finally, we provide some
additional analysis on different aspects of our method, such
as visualization analysis, parameter sensitivity, and influence
of different noise proportions.

A. Datasets

In this section, we briefly introduce six multi-view datasets
and four multi-modal datasets: Scenel5 [50] is a collection
of 4,485 images from 15 different categories in indoor and
outdoor scenes. Following [51], we use GIST and PHOG
to extract 20-dim and 59-dim features for each image, re-
spectively. Caltech-101 [52] contains 9,146 images from 102
different objects. We follow [9] to obtain 1,984-dim and 512-
dim features of all images by HOG and GIST, respectively.
DeepAnimal [26] comprises 10,158 images from over 50
animal classes. Similar to [26], we employ DECAF [53] and
VGG19 [54] models to extract 4096-dim features from each
image as its two views. NoisyMNIST [55] includes 70,000
images belonging to 10-digit classes. Since some competitors
cannot handle large-scale data, we choose 30,000 samples
at random. Following [15], we use the raw images and the
corresponding images with white Gaussian noise as two views.
100Leaves [56] has 1,600 images from 100 classes, which
have three views extracted by texture histogram features, shape
descriptor, and fine-scale margin. Caltech-3V [10] contains
1,400 images from 7 classes, which has the three-view data (
i.e., WM, CENTRIST, and LBP). WIKI [4] is a widely-used
cross-modal dataset, including 2,866 image-text pairs from 10
semantic classes. Following [4], we adopt the 128-dimensional
SIFT feature vector and the 10-dimensional topic vector to

represent image-text pairs. NUS-WIDE [57, 58] contains
9,000 images and the corresponding tags from 10 classes.
Following [59], we use the 19-layer VGGNet to extract image
representation and adopt the 4,096-dimensional deep features
from the fc7 layer to represent image data. And we adopt
the sentence CNN to extract 300-dimensional features as
text representation. XMedia [60] consists of 40,0000 text-
image pairs with 200 classes. Similar to [59], we can obtain
4,096-dimensional deep image features and 300-dimensional
text features. XRMB [61] contains 85,297 multi-view data
(i.e., the acoustic view and the articulation view) from 39
classes, whereas their features are 273 and 112 dimensions,
respectively.

B. Experiment Settings

After obtaining the view-specific representations, similar to
SURE [26], we conduct the semantic-level alignment scheme
to realign the cross-view data. Once we obtain the realigned
multi-view data, we can use the concatenated representations
to perform downstream tasks, such as clustering. Specifically,
our RMCNC can be conducted in three steps to achieve MVC.

Step 1: After we learn the representations h(X (1),@1)
and hqo(X (2)792), we can calculate the Euclidean distance
D € RY*¥ between them.

Step 2: For each view, we adopt the smallest distance (
D;;) corresponding representation as the correspondences of
other views, thereby obtaining the realigned data.

Step 3: We generate a consensus representation by concate-
nating them and adopting k-means to achieve MVC.

In general, the proposed RMCNC is summarized in Al-
gorithm 1. In our experiment settings, we adopt the neural
networks (h,(X (), 0,)) to encode all views X (*), where
the feature dimension of each view is d". Specifically, for
these datasets, we set the dimension of the encoders to
d¥—1024—1024—1024—512 for the NUS-WIDE and Caltech-
3V datasets, d¥ — 1024 — 1024 — 512 for the Caltech-101,
NoisyMNIST, and XRMB datasets, and d” — 1024 — 512 the
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TABLE II: The fully view-alignend clustering results (%) on four benchmarks.

Methods Scene-15 Caltech-101 Animal NoisyMNIST
ACC | NMI | ARI | ACC | NMI | ARI | ACC | NMI | ARI | ACC | NMI | ARI
CCA (NeurIPS’03) 36.37 | 36.91 | 19.82 | 20.25 | 45.41 | 16.34 | 20.40 | 14.70 | 12.70 | 71.31 | 52.60 | 48.46
KCCA (JMLR’02) 37.93 | 37.42 | 21.38 | 21.45 | 45.58 | 17.62 | 25.30 | 15.60 | 11.80 | 96.85 | 92.10 | 93.23
DCCA (ICML’13) 36.61 | 39.20 | 21.03 | 27.60 | 47.84 | 30.86 | 23.21 | 17.12 | 13.15 | 89.64 | 88.33 | 83.95
DCCAE (ICML’15) 34.58 | 39.01 | 19.65 | 19.84 | 45.05 | 14.57 | 30.00 | 43.80 | 18.00 | 78.00 | 81.24 | 68.15
LMSC (CVPR’17) 38.46 | 35.50 | 20.54 | 26.87 | 48.80 | 18.06 | 43.91 | 48.20 | 33.40 / / /
MvC-DMF (AAAT’'17) | 30.99 | 31.35 | 15.68 | 24.35 | 44.98 | 14.82 | 44.56 | 55.62 | 30.09 | 74.39 | 63.22 | 49.79
SwMC (IJCAT’'17) 33.89 | 32.98 | 11.78 | 30.74 | 36.07 | 7.75 | 45.98 | 55.45 | 34.96 / / /
BMVC (TPAMI'18) 40.74 | 41.67 | 24.19 | 27.59 | 46.43 | 21.28 | 41.01 | 55.22 | 36.36 | 88.31 | 77.01 | 76.58
AE2-Nets (CVPR’19) | 37.17 | 40.47 | 22.24 | 20.79 | 45.01 | 15.89 | 3.80 | 0.10 | 0.30 | 42.11 | 43.38 | 30.42
PVC (NeurIPS’20) 38.01 | 39.82 | 21.06 | 21.74 | 49.31 | 18.48 | 3.80 | 0.00 | 0.00 | 87.10 | 92.84 | 93.14
MvCLN (CVPR’21) 37.90 | 42.31 | 25.58 | 30.41 | 46.90 | 42.99 | 35.30 | 54.20 | 29.40 | 97.30 | 94.16 | 95.31
T-UMC (TCYB’22) 37.30 | 35.49 | 26.21 | 26.89 | 49.53 | 33.72 | 31.10 | 37.50 | 20.50 / / /
UIMC (TNNLS22) 32.12 | 32.03 | 23.60 | 26.14 | 49.63 | 28.22 | 30.17 | 36.72 | 19.45 / / /
SURE (TPAMI’23) 4275 | 42.48 | 24.57 | 34.16 | 48.04 | 51.45 | 35.80 | 53.60 | 29.50 | 98.39 | 95.41 | 96.50
Our RMCNC 43.70 | 43.31 | 26.34 | 34.63 | 42.04 | 51.00 | 46.69 | 57.70 | 37.00 | 98.65 | 96.00 | 97.04

Scene-15, Animal, WIKI, XMedia, and 100Leaves datasets,
respectively. We implement our RMCNC using PyTorch and
train it on one NVIDIA GeForce GTX 3090 GPU. All
comparison experiments were conducted on Nvidia GeForce
RTX 3090 and Tesla V100 GPUs. For optimization, we use
Adam [62] with the initial learning rate, without using any
scheduler or weight decay. Furthermore, we train our RMCNC
for 100 epochs and set the batch size as 1,024 for all datasets.
To evaluate our RMCNC comprehensively, we exploit three
different settings as follows:

Partially view-aligned: We randomly partition tested
datasets into two equal parts, i.e., view-unaligned set
{U@Y_ and view-aligned set {A("}Y_,. For the view-
unaligned data {U®Y_,  we randomly shuffle the samples in
other views except for the first view, thereby obtaining the fully
view-unaligned set {U®)}Y_, . For PVC, MvCLN, SURE, and
our RMCNC, we directly apply them to the partially view-
aligned data. For other baselines that cannot handle PVP, we
first use PCA to project data into a latent space, and then use
the Hungarian algorithm to establish the cross-view alignment
relationships. Then we apply these baselines to the realigned
data. Fully view-aligned: The PVP-oriented methods and our
RMCNC still need to realign views after training because
they assume the presence of unknown unaligned data in the
clustering stage. For other baselines, we directly adopt them
to the fully view-aligned data. Noisy correspondence: In
this setting, since the cross-view alignment ground truths are
unknown, all baselines are directly applied to the data with
noisy correspondence.

C. Baselines and Evaluation Metrics

In this section, we compare our proposed RMCNC with 14
state-of-the-art MVC methods, which can be divided into three
categories: fully-view-aligned methods (CCA [63], KCCA
[64], DCCA [65], DCCAE [55], LMSC [66], MvC-DMF [67],
SwMC [68], BMVC [9], and AE2-Nets [28]), partially-view-
aligned methods (PVC [19], MvCLN [25], SURE [26]), and

fully view-unaligned methods (T-UMC [22], UIMC [21]). For
PVP and FVP, we compare our RMCNC with all baselines.
For NCP, we only compare our RMCNC with partially-view-
aligned methods and fully view-unaligned methods, as fully-
view-aligned methods cannot handle these scenarios. For these
methods, we mainly take the two-view datasets as an example
to conduct clustering experiments. In addition, we add three
methods (i.e., MFLVC [10], DCP [69], and DealMVC [70])
to perform experiments on the three-view datasets.

To measure the clustering performance comprehensively, we
utilize three widely-used metrics in the experiments, namely
Accuracy (ACC), Normalized Mutual Information (NMI), and
Adjusted Rand Index (ARI). For these metrics, higher values
indicate better performance, and the best scores are marked in
bold. Note, °/* indicates that we cannot perform the method
due to out of memory. In addition, to reduce the influence of
randomness on the performance, we repeat each experiment
five times for all methods, including our RMCNC, and report
the average results.

D. Comparison with State-of-the-Arts

We conduct extensive experiments under FVP, PVP, and
NCP to evaluate the effectiveness of our RMCNC. For NCP,
we artificially inject incorrect correspondence of different ra-
tios (i.e., 20%, 40%, 60%, and 80% noise rates) to investigate
the robustness of tested methods against noisy correspondence.
We report the average results of the five-time runs in Tables I
to III. Due to the high computational complexity and running
time of T-UMC and UIMC, we cannot conduct the experi-
ments on the large-scale NoisyMNIST dataset.

Results under partially view-aligned: We demonstrate
the clustering performance in the PVP scenario in Table I.
From these results, we can observe that: 1) Our RMCNC
achieves the best performance on all datasets with all metrics.
Specifically, on the Animal dataset, our RMCNC obtains
remarkable improvements of 8.81% (ACC), 8.65% (NMI),
and 9.87% (ARI) compared to the second-best results. This
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TABLE III: The clustering results (%) with different noise rates on four benchmarks.

Noise | Methods Scene-15 Caltech-101 Animal NoisyMNIST
ACC | NMI | ARI | ACC | NMI | ARI | ACC | NMI | ARI | ACC | NMI | ARI
PVC (NeurIPS’20) | 30.28 | 23.64 | 20.41 | 19.12 | 37.47 | 17.94 | 3.80 | 0.10 | 0.30 | 70.42 | 75.54 | 70.27
MvVCLN (CVPR’21) | 39.31 | 36.68 | 21.16 | 30.43 | 41.78 | 43.09 | 21.96 | 26.87 | 2.43 | 80.26 | 77.34 | 72.25
20% T-UMC (TCYB’22) | 37.13 | 35.33 | 24.43 | 26.30 | 39.01 | 32.38 | 30.91 | 37.68 | 20.72 / / /
UIMC (TNNLS‘22) | 31.29 | 31.84 | 23.42 | 26.79 | 40.72 | 31.22 | 30.48 | 37.00 | 19.35 / / /
SURE (TPAMI'23) | 40.02 | 37.27 | 21.50 | 29.68 | 41.35 | 41.71 | 32.26 | 43.13 | 22.40 | 91.00 | 83.08 | 83.06
Our RMCNC 41.00 | 40.09 | 25.70 | 30.60 | 45.06 | 41.77 | 39.87 | 51.00 | 30.01 | 95.29 | 88.00 | 89.89
PVC (NeurIPS’20) | 22.41 | 13.65 | 20.28 | 13.31 | 27.73 | 15.81 | 3.80 | 0.10 | 0.30 | 43.28 | 51.45 | 39.19
MvCLN (CVPR’21) | 37.01 | 35.21 | 19.61 | 18.45 | 30.15 | 18.79 | 16.27 | 1538 | 2.13 | 54.91 | 53.39 | 41.32
40% T-UMC (TCYB’22) | 35.51 | 34.78 | 23.52 | 24.02 | 37.67 | 30.29 | 30.23 | 37.18 | 20.79 / / /
UIMC (TNNLS22) | 31.38 | 31.89 | 23.46 | 26.44 | 40.95 | 30.97 | 30.90 | 37.10 | 19.90 / / /
SURE (TPAMI'23) | 36.94 | 36.16 | 19.86 | 19.86 | 30.74 | 22.81 | 25.54 | 29.40 | 13.85 | 49.66 | 45.62 | 32.59
Our RMCNC 39.55 | 40.93 | 24.86 | 27.57 | 46.56 | 36.88 | 36.39 | 46.58 | 26.05 | 91.00 | 79.99 | 83.02
PVC (NeurIPS’20) | 17.88 | 7.02 | 17.04 | 9.43 | 21.20 | 11.43 | 3.80 | 0.10 | 0.30 | 30.21 | 32.17 | 19.78
MvCLN (CVPR’21) | 30.40 | 33.20 | 17.03 | 1091 | 23.89 | 540 | 12.10 | 1491 | 1.37 | 40.59 | 34.92 | 23.32
60% T-UMC (TCYB’22) | 35.59 | 34.29 | 20.62 | 22.88 | 35.17 | 26.01 | 30.77 | 37.09 | 20.05 / / /
UIMC (TNNLS22) | 31.26 | 31.84 | 21.40 | 21.89 | 39.41 | 26.79 | 30.18 | 36.97 | 19.40 / / /
SURE (TPAMI’23) | 31.05 | 30.55 | 15.35 | 10.83 | 23.69 | 4.53 | 16.64 | 18.20 | 5.52 | 35.55 | 29.22 | 17.57
Our RMCNC 38.36 | 38.80 | 22.97 | 24.02 | 41.59 | 28.91 | 34.91 | 43.05 | 22.73 | 84.39 | 69.47 | 62.64
PVC (NeurIPS°20) | 12.91 | 2.52 | 12.19 | 7.33 | 17.13 | 8.88 | 3.80 | 0.10 | 0.30 | 25.62 | 23.58 | 15.26
MvCLN (CVPR’21) | 25.80 | 28.71 | 13.07 | 8.06 | 20.97 | 2.80 | 10.08 | 12.76 | 1.39 | 34.30 | 25.99 | 16.69
0% T-UMC (TCYB’22) | 32.15 | 30.51 | 18.63 | 14.21 | 28.47 | 12.53 | 25.63 | 29.34 | 14.82 / / /
UIMC (TNNLS22) | 31.31 | 31.80 | 18.39 | 14.86 | 30.25 | 13.26 | 28.54 | 32.49 | 15.16 / / /
SURE (TPAMI'23) | 24.39 | 26.90 | 11.66 | 8.20 | 21.42 | 3.54 | 10.17 | 12.08 | 2.16 | 27.34 | 27.34 | 15.88
Our RMCNC 33.53 | 33.41 | 19.24 | 15.67 | 32.35 | 13.59 | 30.47 | 35.42 | 16.95 | 74.31 | 60.87 | 56.36
demonstrates that our RMCNC could learn better representa- oas 05
tions to realign the view-unaligned data. 2) The clustering task B =
on the large-scale NoisyMNIST dataset is more challenging gzzz ) - §0.4 )
due to the presence of unaligned data. Clearly, all fully- ) P e e -
view-aligned methods perform poorly against PVP on the Egjz . :go.z — \
dataset. On the other hand, partially-view-aligned methods and &, o acc &, - AcC .
our RMCNC could learn robust representations and achieve 0.5 o o T
impressive results. In particular, our RMCNC achieves the M Esidadsdzon 05 1 3 3 4 0idsiearesieaon o5 1 2 3 4
best performance, i.e., 95.53%, 88.76%, and 90.43% scores qvalue q value
for ACC, NMI, and ARI metrics, respectively. (a) Scene-15 (b) Caltech-101
Results under fully view-aligned: For the fully view- 05 Lo . .
aligned setting, we report the average results of all tested o4 0 08] ——s — )
methods on four multi-view benchmarks in Table II. From EO_B e S %0_6 \
the table, one could see that: 1) Our RMCNC outperforms all £ €
baselines in most metrics. More specifically, on the Animal %“ - %“
dataset, our RMCNC achieves an improvement of 0.71%, % o1 R~ L .| Soz e .
2.08%, and 0.64% for ACC, NMI, and ARI metrics, respec- 00 oA j— 00 el
tively. This indicates that the proposed method can enhance 16'516"416‘318‘?{,13?5(31 S le'sm'“e'ale';o;a?jel S
the representation capability of the well-aligned data. 2) Most (© Animal (d) NoisyMNIST

methods generally have better results under this setting than
the PVP setting. This is because FVP has more ground-truth
correspondences to provide ample supervised information. 3)
Most methods obtain promising performance on NoisyMNIST.
The possible reason is that the large-scale well-aligned data
could provide more semantic information.

Results under noisy correspondence: We test the robust-
ness of the baselines and our RMCNC under different noise
rates (i.e., 20%, 40%, 60%, and 80%) on four datasets with

Fig. 6: Parameter analysis of 40% noise in terms of q.

synthetic noisy correspondences. We report the quantitative
evaluation results in Table III. From the table, we could
observe that: 1) RMCNC remarkably outperforms partially-
view-aligned methods and fully-view-unaligned methods on
all metrics. This demonstrates the superior robustness of our
RMCNC against NC. 2) RMCNC achieves the best perfor-
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TABLE IV: The multi-modal clustering results (%) with different noise rates on four benchmarks.

Noise | Methods WIKI NUS-WIDE XMedia XRMB
ACC | NMI | ARI | ACC | NMI | ARI | ACC | NMI | ARI | ACC | NMI | ARI
PVC (NeurIPS°20) | 12.60 | 0.09 | 0.00 | 0.10 | 0.00 | 0.00 / / / / / /
MvCLN (CVPR’21) | 52.72 | 46.03 | 34.14 | 54.13 | 38.31 | 35.73 | 18.24 | 60.32 | 12.58 | 22.37 | 35.6 | 124
0% T-UMC (TCYB’22) | 17.67 | 3.78 | 1.76 | 47.12 | 33.25 | 30.71 / / / / / /
UIMC (TNNLS22) | 16.95 | 4.39 | 1.77 | 55.81 | 42.69 | 33.1 / / / / / /
SURE (TPAMI’23) | 54.21 | 47.00 | 36.34 | 57.44 | 44.82 | 38.32 | 53.59 | 83.89 | 32.87 | 23.49 | 35.54 | 13.06
Our RMCNC 59.26 | 52.99 | 45.32 | 67.59 | 53.64 | 48.99 | 79.42 | 88.57 | 71.50 | 28.66 | 41.04 | 19.23
PVC (NeurIPS°’20) | 12.60 | 0.09 | 0.00 | 0.10 | 0.00 | 0.00 / / / / / /
MvCLN (CVPR’21) | 44.90 | 29.86 | 22.40 | 42.46 | 29.25 | 21.33 | 17.14 | 61.55 | 14.52 | 24.21 | 30.61 | 12.48
20% T-UMC (TCYB’22) | 18.08 | 3.92 | 1.84 | 39.11 | 21.05 | 18.93 / / / / / /
UIMC (TNNLS22) | 16.84 | 4.36 | 1.74 | 45.00 | 32.05 | 29.29 / / / / / /
SURE (TPAMI'23) | 42.99 | 29.07 | 21.78 | 57.00 | 45.02 | 38.58 | 45.09 | 72.33 | 31.12 | 22.81 | 32.16 | 12.85
Our RMCNC 48.89 | 33.83 | 28.91 | 64.38 | 48.29 | 44.06 | 70.49 | 80.17 | 56.57 | 28.28 | 38.43 | 19.50
PVC (NeurIPS°20) | 12.60 | 0.09 | 0.00 | 0.10 | 0.00 | 0.00 / / / / / /
MvCLN (CVPR’21) | 35.89 | 17.51 | 12.53 | 36.43 | 18.60 | 13.44 | 13.48 | 47.59 | 9.62 | 21.25 | 23.86 | 10.20
40% T-UMC (TCYB’22) | 17.98 | 4.00 | 1.89 | 26.72 | 7.75 | 6.54 / / / / / /
UIMC (TNNLS22) | 16.67 | 4.25 | 1.76 | 35.01 | 22.04 | 19.29 / / / / / /
SURE (TPAMI’23) | 35.10 | 17.31 | 12.40 | 39.10 | 21.92 | 16.21 | 43.93 | 64.31 | 30.37 | 22.59 | 29.80 | 11.69
Our RMCNC 38.50 | 20.11 | 15.80 | 59.70 | 41.61 | 37.64 | 56.17 | 69.17 | 36.62 | 27.58 | 35.24 | 18.95
PVC (NeurIPS’20) | 12.60 | 0.09 | 0.00 | 0.10 | 0.00 | 0.00 / / / / / /
MvCLN (CVPR’21) | 26.80 | 8.48 | 545 | 2836 | 12.42 | 803 | 9.76 | 39.12 | 7.67 | 1432 | 11.72 | 4.68
60% T-UMC (TCYB’22) | 1853 | 4.22 | 2.02 | 1639 | 1.61 | 1.73 / / / / / /
UIMC (TNNLS’22) | 16.63 | 423 | 1.75 | 15.19 | 12.19 | 9.45 / / / / / /
SURE (TPAMI'23) | 27.11 | 8.61 | 5.58 | 28.83 | 13.49 | 8.64 | 27.05 | 52.86 | 16.34 | 19.35 | 24.21 | 9.15
Our RMCNC 29.29 | 10.77 | 7.26 | 52.41 | 31.87 | 27.84 | 37.65 | 55.39 | 16.72 | 25.67 | 30.85 | 17.84
TABLE V: Multi-view clustering performance (%) with more than two views.
Methods 100Leaves (0%) 100Leaves (50%) Caltech-3V (0%) Caltech-3V (50%)
ACC | NMI | ARI | ACC | NMI | ARI | ACC | NMI | ARI | ACC | NMI | ARI
T-UMC (TCYB’22) | 63.81 | 82.19 | 53.05 | 38.54 | 58.42 | 25.12 | 39.50 | 28.73 | 18.63 | 39.86 | 29.28 | 19.21
UIMC (TNNLS’22) | 44.15 | 69.06 | 29.20 | 43.40 | 60.75 | 28.30 | 40.79 | 31.91 | 30.85 | 40.95 | 31.52 | 30.78
MFLVC (CVPR’22) | 4.00 | 30.29 | 2.85 | 250 | 13.04 | 090 | 61.97 | 57.13 | 47.57 | 47.86 | 22.63 | 19.83
DCP (TPAMI’23) 58.57 | 84.59 | 52.60 | 42.35 | 64.12 | 25.43 | 56.34 | 50.82 | 40.47 | 53.66 | 45.95 | 37.19
DealMVC (MM’23) | 10.37 | 51.06 | 8.37 | 5.63 | 19.75 | 1.22 | 59.00 | 55.24 | 43.90 | 49.21 | 26.29 | 23.41
Our RMCNC 77.17 | 89.88 | 69.11 | 47.07 | 67.81 | 29.36 | 65.80 | 56.75 | 48.50 | 58.83 | 47.16 | 37.74

mance at different noise rates. Especially, the results under
80% noise show the stability and robustness of RMCNC. 3)
The performance of most methods decreases sharply with
the increase of noise rate, as misaligned pairs make the
supervised information unreliable. 4) Fully-view-unaligned
methods should realign the whole dataset during training,
which makes them more effective for high-noise data by
sacrificing efficiency. The experimental results also indicate
they have better robustness for high-noise data.

Results of multi-modal clustering: We further evaluate
the robustness of our RMCNC to handle with multi-modal
data with the large semantic gap. Specifically, we record the
multi-modal clustering results under different noise rates (i.e.,
0%, 20%, 40%, and 60%) on four multi-modal datasets in
Table IV. From the table, one could see that: 1) Our RM-
CNC remarkably outperforms all comparison methods under
different noise rates on all multi-modal datasets, which further
shows the superior robustness of RMCNC against NC. 2) Due

to the heterogeneity gap between multi-modal data, fully-view-
unaligned methods have difficulty aligning the whole dataset
during training, thereby leading to poor performance. 3) Due
to instance-level alignment, PVP has a high computational
complexity O(n?), resulting in the inability to handle large-
scale data, e.g., XMedia and XRMB. Besides, instance-level
alignment fails to deal with the heterogeneity gap, leading to
disappointing results on the WIKI and NUS-WIDE datasets.
4) Although MvCLN and SURE are robust PVP-oriented
methods, they still face overfitting or underfitting problems
due to unknown noisy pairs, especially on the XMedia dataset.

Results with more than two views: To evaluate the
clustering performance of our RMCNC on multi-view data
with more than two views, we compare it with several MVC
methods. To be specific, we report the clustering results
under different noise rates (i.e., 0% and 50%) on two three-
view datasets in Table V. From the table, we could have
the following observations: 1) RMCNC has a significant im-
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TABLE VI: Ablation study on all datasets with different noise rates. The first and second best are marked in bold

and underlined, respectively.

Noise | Methods Scene-15 Caltech-101 Animal NoisyMNIST
ACC | NMI | ARI | ACC | NMI | ARI | ACC | NMI | ARI | ACC | NMI | ARI
InfoNCE 34.58 1 33.59 | 18.35|19.28 | 39.6 | 14.59 | 33.82 | 38.87 | 19.03 | 81.93 | 67.15 | 65.08
20% | MAE 36.62 | 37.08 | 22.38 | 21.41 | 43.53 | 17.36 | 33.42 | 40.86 | 18.83 | 38.49 | 30.68 | 14.99
RMCNC-log | 39.85 | 42.15 | 25.61 | 26.36 | 39.76 | 27.67 | 44.58 | 48.20 | 30.57 | 95.10 | 88.28 | 89.38
RMCNC 41.00 | 40.09 | 25.70 | 30.60 | 45.06 | 41.77 | 39.87 | 51.00 | 30.01 | 95.29 | 88.00 | 89.89
InfoNCE 34.14 | 31.29 | 17.13 | 14.25 | 25.80 | 8.60 | 30.45 | 30.15 | 14.01 | 57.78 | 51.93 | 37.92
40% | MAE 37.60 | 37.13 | 22.68 | 18.15 | 35.09 | 13.43 | 31.55 | 37.96 | 16.58 | 36.29 | 25.35 | 13.34
RMCNC-log | 38.47 | 40.92 | 24.30 | 23.32 | 31.17 | 21.24 | 36.56 | 36.28 | 21.44 | 90.88 | 80.56 | 80.57
RMCNC 39.55 | 40.93 | 24.86 | 27.57 | 46.56 | 36.88 | 36.39 | 46.58 | 26.05 | 91.00 | 79.99 | 83.02
InfoNCE 33.72 |1 28.71 | 16.07 | 12.60 | 24.14 | 5.96 |23.97 | 21.26 | 8.33 | 44.86 | 31.27 | 23.04
60% | MAE 34.53 | 33.78 | 19.38 | 14.25 | 25.80 | 8.60 | 28.11 | 33.32 | 13.58 | 25.72 | 14.78 | 6.78
RMCNC-log | 37.08 | 38.47 | 22.53 | 18.00 | 22.85 | 11.59 | 28.57 | 25.38 | 13.19 | 81.57 | 68.15 | 60.93
RMCNC 38.36 | 38.80 | 22.97 | 24.02 | 41.59 | 28.91 | 34.91 | 43.05 | 22.73 | 84.39 | 69.47 | 62.64
InfoNCE 30.80 | 28.12 | 20.85 | 8.52 | 18.41 | 2.74 | 1523 | 11.9 | 3.06 |32.93|21.68 | 13.70
80% | MAE 33.17 | 32.51 | 17.09 | 9.79 | 18.78 | 4.06 | 22.56 | 25.57 | 8.75 |21.61 | 11.69 | 5.17
RMCNC-log | 33.66 | 32.86 | 17.91 | 15.08 | 17.61 | 7.98 | 17.68 | 14.64 | 4.69 | 70.70 | 58.11 | 50.25
RMCNC 33.53133.41 | 19.24 | 15.67 | 32.35 | 13.59 | 30.47 | 35.42 | 16.95 | 74.31 | 60.87 | 56.36
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Fig. 7: Parameter analysis of 40% noise in terms of 7.

provement on clean three-view datasets compared with these
baselines, which indicates that RMCNC could explore more
comprehensive information from multiple views. 2) Under the
case of 50% noise rate, RMCNC still has the best performance,
which verifies the importance of leveraging robust multi-
view learning with NC. 3) For 100Leaves, due to the low
dimensionality (i.e., 64-dimension) of the data, MFLVC and
DealMVC cannot extract effective representation information,
thereby resulting in extremely poor performance.

E. Ablation Study

To verify the effectiveness of our RMCNC comprehen-
sively, we conduct some ablation studies. Specifically, we

(a) 0 Epoch

(b) 40 Epoch

Fig. 8: t-SNE visualization on NoisyMNIST with 40% noise.

choose different loss functions (i.e., InfoNCE and MAE) and
perform the training experiments by using the same settings
(such as network structure, optimizer, and hyper-parameters).
Moreover, to further demonstrate the effectiveness of noise-
tolerance contrastive learning, we replace the exponential loss
with the negative-log-likelihood loss, named RMCNC-log. The
loss of RMCNC-log can be defined as follows:

v Vv Guv
=30 (- (G5 am) )

v=1u#v

(1)

The ablation experiments are conducted on four datasets with
different noise rates, whose evaluation results are shown in
Table VI. From the results, both our RMCNC and RMCNC-
log achieve better performance, which indicates maximizing
total alignment probability can alleviate the adverse impact of
individual false positives and improve robustness. However,
for RMCNC-log, it may face the overfitting problem caused
by NCs, thus degrading the clustering performance. Thanks to
our exponential loss, our RMCNC achieves better performance
than RMCNC-log, which further indicates that our method
can overcome the overfitting caused by NC. Overall, our
RMCNC outperforms three variant methods, which indicates
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(a) MVCLN (40% noise)

(b) SURE (40% noise)

(c) RMCNC (40% noise)

(d) RMCNC (0% noise)

Fig. 9: t-SNE visualization of representations learned by MvCLN, SURE, and RMCNC on the NoisyMNIST.
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Fig. 11: The Performance against the number of epochs for training with different ¢ values on the Scene-15 dataset.

our method can effectively mitigate the negative influence
caused by NC, and endow MVC with robustness against NC.
Besides, as demonstrated in Figure 3, we can observe that
InfoNCE leads to the overfitting problem since it prioritizes
the hard pairs during training, thus making it vulnerable to
NC. As training progresses, it causes overfitting to incorrect
supervision, leading to a drop in performance. MAE gives
equal weight to all samples, making it more resilient to noisy
data. Although MAE could alleviate the overfitting problem
and achieve stable performance, it will lead to an underfitting
problem due to its inertia against hard samples. Fortunately,
our exponential loss finds a good balance between InfoNCE
and MAE, thus enjoining robustness against NC like MAE
while activeness to hard samples like InfoNCE. In general,
our RMCNC can obtain better performance improvement due
to our noise-tolerance multi-view contrastive learning.

F. Parameter Analysis

We analyze the influence of the parameters ¢ and 7 on
the clustering performance by conducting experiments with

40% noise. First, we vary the parameter ¢ from 1075 to 4
by fixing 7 0.5. The experimental results are shown in
Figure 6. From the figure, one could see that our method
achieves the best performance when ¢ = 2. Then, we vary
the temperature parameter 7 from 0.1 to 1 by fixing g = 2.
As shown in Figure 7, we plot the performance curves of
MVC with different ¢ on four datasets with 40% noise. We can
observe that our RMCNC achieves stable performance when
parameter 7 changes significantly. It indicates that RMCNC
has a large range of 7 (i.e., from 0.5 to 1), which shows the
ease of tuning of RMCNC.

G. Visualization Analysis

To illustrate the superiority of the representation learned
by our RMCNC, we use ¢t-SNE to visualize the representa-
tion on the NoisyMNIST dataset with 40% noise. First, we
show ¢-SNE visualization with different epochs in Figure 8.
From the figure, one could see that the data is mixed in
the initialization phase, which makes it difficult to cluster
different classes. After 40 epochs, the clustering structures of
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learning representation become clearer, which indicates that
our method can improve clustering performance. Moreover,
we show ¢-SNE visualization with different methods under
40% noise in Figure 9. From the figure, we could find that
MvCLN and SURE cannot resist noise very well, thus the
data for each category is mixed together. Since our RMCNC
has better robustness against NC, it has a clear clustering
structure of data. In other words, RMCNC obtains large inter-
cluster scatters and small intra-cluster scatters. When multi-
view data is clean, we can see that our RMCNC obtains a
clearer cluster structure on clean data than on noisy data. It
indicates that NC destroys the discriminative information of
the data, making it difficult for the model to distinguish the
alignment relationship.

H. Influence of Different Noise Proportions

To make a more careful comparison, we evaluate the per-
formance of our RMCNC on different rates of noise corre-
spondences (i.e., from 10% to 80%). The performance curves
on the Animal dataset are plotted in Figure 10. Based on the
figure, the conclusion can be drawn as follows: 1) As the ratio
increases, the clustering performance decreases, which indi-
cates that the correspondence noise could mislead the model
and degrade its performance. 2) Our RMCNC can obtain stable
results until the ratio reaches 80%, which indicates that our
RMCNC can learn realigned representations by using fewer
aligned samples and be immune to NC. 3) Our RMCNC
obtains significant improvement in different noise proportions
compared with MvCLN and SURE. Specifically, as the noise
rate increases, the performance of our RMCNC drops smaller.
It indicates the effectiveness and robustness of our method for
resisting the negative effects of the correspondence noise.

1. Robustness Experiments with Different q

To better investigate the influence of g, we plot the perfor-
mance curves with 40% noise in terms of different ¢ (i.e., from
le-5 to 4). As shown in Figure 11, when training on Scene-15
with 40% noise, the clustering scores decrease as increasing q.
Besides, compared with the comparison methods in Figure 3,
our method is still robust for distinct ¢, which can overcome
the overfitting problem.

V. CONCLUSION

In this paper, we address a new and challenging problem
in MVC, namely noisy correspondence (NC). To tackle this
problem, we propose a novel deep framework for robust MVC
with NC to mitigate or even eliminate the negative effect
of the misaligned pairs. To avoid the overfitting caused by
NC, we maximize the total alignment probability and propose
the noise-tolerance multi-view contrastive learning to endow
our model with robustness against NC. To the best of our
knowledge, for the first time, we propose a unified paradigm
to deal with both NCP and PVP. Besides, we qualitatively
show that our RMCNC can mitigate the negative influence
of NCP. Extensive experiments demonstrate that RMCNC
achieves state-of-the-art performance and robustness. In the
future, we will study a unified framework to simultaneously
solve Partially Sample-missing Problem (PSP) and NCP.
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