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Abstract— Incomplete multiview clustering (IMVC) aims to
reveal the underlying structure of incomplete multiview data
by partitioning data samples into clusters. Several graph-based
methods exhibit a strong ability to explore high-order infor-
mation among multiple views using low-rank tensor learning.
However, spectral embedding fusion of multiple views is ignored
in low-rank tensor learning. In addition, addressing missing
instances or features is still an intractable problem for most exist-
ing IMVC methods. In this paper, we present a unified spectral
embedding tensor learning (USETL) framework that integrates
the spectral embedding fusion of multiple similarity graphs
and spectral embedding tensor learning for IMVC. To remove
redundant information from the original incomplete multiview
data, spectral embedding fusion is performed by introducing
spectral rotations at two different data levels, i.e., the spectral
embedding feature level and the clustering indicator level. The
aim of introducing spectral embedding tensor learning is to
capture consistent and complementary information by seeking
high-order correlations among multiple views. The strategy of
removing missing instances is adopted to construct multiple
similarity graphs for incomplete multiple views. Consequently,
this strategy provides an intuitive and feasible way to construct
multiple similarity graphs. Extensive experimental results on
multiview datasets demonstrate the effectiveness of the two spec-
tral embedding fusion methods within the USETL framework.

Index Terms— Incomplete multiview clustering, low-rank ten-
sor learning, spectral embedding, spectral rotation.

I. INTRODUCTION

ULTIVIEW data are usually collected from different
sources or described by different types of features. The
analysis of multiview data has attracted attention in various
applications, e.g., object segmentation [1], [2], information
retrieval [3], [4], [5] and scene recognition [6]. Multiview
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clustering (MVC) aims to categorize data samples into clusters
according to a specific similarity rule. It provides an effective
way to explore the underlying structure of multiview data.

MVC has been heavily investigated in recent years [5], [7],
[81, [9], [10], [11], [12]. Compared with traditional clustering
methods for single-view data [13], [14], MVC optimally
exploits complementary information among multiple views to
improve clustering performance. The analysis of multiview
data is essentially the task of fusing information from mul-
tiple views. In most MVC methods, the fusion of multiview
data information can be performed at three different data
levels, i.e., the original data level [5], [15], [16], the feature
level [17], [18] and the clustering indicator level [4], [6]. For
example, Chen et al. [5] presented a symmetric multiview
low-rank representation method to discover the correlations
of multiview data. Li et al. [17] presented a consensus graph
learning (CGL) method that learns an affinity matrix from
multiple spectral embedding graphs. Tang et al. [6] presented
a unified one-step MVC framework that incorporates spectral
embedding and k-means clustering [19] to obtain discrete
clustering labels. These algorithms often achieve impressive
clustering performance for multiview data at different data
levels. Nevertheless, some instances may not be available in
one or more views for various reasons; e.g., some of the
data may be missing, or there may be corruption in the
collecting devices. Such incompleteness often leads to heavy
performance deterioration for existing MVC methods. As a
result, dealing with incomplete multiview data poses a great
challenge for researchers.

A variety of incomplete multiview clustering (IMVC) meth-
ods have been proposed for learning an affinity matrix via
various similarity constraints [1], [4], [20], [21], [22], [23],
[24], [25]. The affinity matrix can be employed to construct
a graph of the data samples. From the perspective of spectral
graph theory [26], the spectral embedding that is employed
for spectral clustering can be calculated from the affinity
matrix. For example, Chen et al. [1] presented an augmented
sparse representation (ASR) method that learns sparse affinity
matrices for individual views under the sparsity constraints.
Unfortunately, however, the redundant information contained
in the original incomplete multiview data inevitably causes
deterioration in the performance of IMVC. Liu et al. [25]
presented a regularized IMVC algorithm that imputes incom-
plete kernel matrices to learn a consensus clustering matrix.
However, the results strongly depend on the choice of the
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base kernel matrices. In addition, a novel multiview matrix
factorization model that incorporates sparse regularization
and graph embedding has been proposed to investigate
the local structures of all incomplete views [21], and a
graph-regularized projective consensus representation learning
(GPCRL) model has been designed to effectively pro-
cess new samples and extract information from multiple
views [20]. Nevertheless, these models neglect the examination
of high-order information across multiple views.

With the goal of exploring the high-order correlations
of incomplete multiple views, numerous tensor-based IMVC
methods have been proposed [27], [28], [29], [30]. For
example, Xie et al. [30] presented a tensor-singular value
decomposition (t-SVD)-based multiview subspace clustering
(MVSC) method that ensure a consensus among different
views by using the tensor nuclear norm (TNN). The t-SVD-
based MVSC method has proven effective in practice, even
though it is not yet fully supported by convolution algebra
theory. Li et al. [28] presented a graph structure refining (GSR)
method in which the TNN is introduced to separate the refined
graph structure from the bias error. Lv et al. [29] presented
a view consistency learning (VCL) algorithm that employs
the tensor Schatten p-norm to learn a low-dimensional rep-
resentation for graph learning. These methods apply tensor
rotation on the self-representation coefficient tensor to examine
the correlations within and across multiple views. Specifi-
cally, tensor rotation provides two benefits for MVSC [30].
First, a self-representation coefficient tensor can be preserved
in the Fourier domain. Second, each frontal slice of this
self-representation coefficient tensor in the Fourier domain
incorporates complementary information from multiple views
when applying a truncated t-SVD operation. In contrast, the
arrangement of the self-representation coefficient is disrupted
in Fourier domain when tensor rotation is not considered. This
leads to degraded clustering performance since complementary
information cannot be effectively captured and propagated
across multiple views [30]. These methods exhibit a strong
ability to explore high-order information among multiple
views with the help of tensors. However, they still suffer from
certain limitations. For example, the ability of the GSR method
to perform information fusion at the feature level is sensitive
to the specific graph structure, and when the VCL method is
used to perform information fusion at the original data level,
the clustering performance is inevitably affected by redundant
information.

In addition to utilizing complementary information among
multiple views, another key to IMVC is to mitigate the detri-
mental effects on clustering performance caused by missing
instances in some views. Several existing IMVC methods
employ an intuitive strategy of filling in missing instances in
incomplete multiview data with zeros or mean values [31].
However, in the case of a relatively large missing data ratio,
such a filling strategy could affect the clustering performance
since data that contain many such fake instances may not
accurately reflect the intrinsic structures of the incomplete
multiview data. An alternative strategy is to integrate an
indictor matrix for sorting the available instances into graph
learning models at the feature level [29], [32]. However, the
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TABLE I
DEFINITIONS OF SYMBOLS
Symbol Definition
n Number of samples or features
d Dimension of samples
c Number of clusters
1, Column vector filled with all ones
I, Identity matrix of size n X n
X € R4xn Data matrix containing the n samples
diag (X) Vector containing the n diagonal elements of X
tr (X) Trace of X
I1X|l4 l1-norm of X
1X|| Frobenius norm of X
[1X, nuclear norm of X
1XIqe maximum value of all the elements in X
T € Rm1Xn2Xn3 Tensor T~
17, Tensor nuclear norm of tensor 7
Y € {0,1}"*¢ A binary clustering indicator matrix
HeR"X*¢ A spectral embedding matrix
R € R°*¢ A rotation matrix

fake features could still limit the final clustering performance
of the models. In addition, some recent work has attempted to
recover missing instances or features in the feature space [25],
[33]. For example, Wen et al. [33] presented an incomplete
multiview tensor spectral clustering method that incorporates
missing view recovery and similarity graph learning into a
unified framework. However, inferring the accurate features
corresponding to the missing instances is an intractable prob-
lem if these instances are completely corrupted. Therefore, the
development of reasonable strategies for dealing with missing
instances in IMVC is worthy of further investigation.

To address the above limitations and drawbacks, we present
a unified spectral embedding tensor learning (USETL) frame-
work that comprises two spectral embedding fusion methods
for IMVC. Unlike existing graph-based IMVC models,
we integrate the spectral embedding fusion of multiple sim-
ilarity graphs and spectral embedding tensor learning into
the USETL framework. Specifically, the USETL framework
combines two key components: stacking different spectral
embedding matrices into a third-order spectral embedding
tensor for graph learning and performing spectral embedding
fusion of multiple similarity graphs by means of spectral rota-
tion. Spectral embedding fusion is performed by introducing
spectral rotation at two different data levels, i.e., the spectral
embedding feature level and the clustering indicator level.
This is beneficial for removing redundant information from the
original incomplete multiview data. Moreover, the introduction
of spectral embedding tensor learning enables consistent and
complementary information to be captured by exploring the
high-order correlations among multiple views. We present an
alternating iterative optimization procedure to solve the two
optimization problems corresponding to these two levels of
spectral embedding fusion. Instead of filling in or recovering
missing instances or features, we introduce a strategy of
removing missing instances from incomplete multiple views
for the construction of multiple similarity graphs. This strategy
provides an intuitive and feasible way to construct multiple
similarity graphs. In addition, we present the related theoretical
analysis of the proposed USETL framework.

Our major contributions are summarized as follows.

o The USETL framework is presented to perform spectral

embedding fusion of multiple similarity graphs via two
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approaches: different spectral embedding matrices are
stacked into a third-order low-rank tensor for graph learn-
ing, and spectral embedding fusion of multiple similarity
graphs is performed by means of spectral rotation.

o Two spectral embedding fusion schemes are proposed
to yield spectral embedding fusion results at two dif-
ferent data levels, i.e., the spectral embedding feature
level and the clustering indicator level. An alternating
iterative optimization procedure is presented to solve the
two optimization problems corresponding to these two
spectral embedding fusion schemes.

« Extensive experiments on six incomplete multiview
datasets validate the effectiveness of the two spectral
embedding fusion methods.

The remainder of this paper is organized as follows.
In Section II, we give a brief review of related work.
Section III presents the proposed USETL framework. Exten-
sive experiments are conducted to validate the effectiveness
of the proposed USETL framework in Section IV. Finally,
we provide a conclusion in Section V.

II. RELATED WORK

In this section, we briefly introduce some related work on
the proposed USETL framework. The notation used in this
paper is summarized in Table I.

A. Spectral Embedding Theory

Consider a matrix X = [X],X2,...,X,] € R with n
samples, where x; € R? (1 < i < n). The weighted adjacency
matrix W € R"*" is used to represent the similarity among
samples. According to spectral graph theory [26], a degree
matrix D € R"™ " is defined as D = diag[dy, da, ..., dy],

n

whose diagonal elements are d; = > W;;. A normalized
j=1
Laplacian matrix L € R"*" is also defined as follows:
L=1I,-D 2wp~1/2, (1)

Suppose that the samples in X can be partitioned into ¢
clusters. The relaxed objective function for a normalized cut
(NCut) [19] can be written as follows:

min 17 (HLHT) st HHH=1,. )

The optimal solution H* consists of the eigenvectors corre-
sponding to the ¢ smallest eigenvalues of L.

The aim of spectral rotation is to find a discrete indicator
matrix solution from the real-valued eigenvectors [34], [35].
The objective function of spectral rotation is formulated as
follows:

min [H*R - Y% s.2. R'R=L, Yl =1,. (3
Y,R

In addition, an improved spectral rotation (ISR) method [36] is

presented to find a discrete solution of the cluster assignments.

The objective function of the ISR method is
) —172|1?
min

min |[H'R — D]/ZY(YTDY)

F
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Algorithm 1 The #-SVT Operator [38]
1: Input: A € R™"1*"2%"3 and a parameter A > 0.

/* fft is a MATLAB command */
Compute A = fft(A,[],3);
/* Perform SVT on each frontal slice of A */
for i=1,.., L;H do

[U,S, V] = svd (AD);

WO =U(S-1), VT,
end for
for i= 12t 41 0y do

WO = conj (W(ng—i+2));
end for
Output: Dy (A) = if ft (W, ]],3).

R A A T o e

_ =
N2

st. RTR=1,,Y1. = 1,. 4)
Setting Y* = D1/2Y(YTDY)71/2, we have
(Y)'Y* = 1. (5)

According to Eq. (5), Y* provides a better approximation of
H* than Y does. Hence, this approach is expected to yield
better clustering results [37].

B. Low-Rank Tensor Learning

For a tensor ) € R"1*"2*"3 the frontal slice of ) is repre-
sented as YV (:, :,i) (1 <i < n3). The transpose of the tensor
Y, denoted as YT e R"™*"1>"3 i obtained by transposing
each frontal slice of ) and then reversing the order of the
transposed frontal slices from the second slice to the nsth
slice [30], [39]. The unfold operator [39] converts ) into
a matrix with a size of nin3 x np and fold is its inverse
operator, i.e.,

Yy
Y®
unfold (Y) = . ,

Y(;Is)

fold (unfold (Y)) =Y (6)

where Y® e R"1*"2 compactly denotes the ith frontal slice
of V.

The definition of the block circulant matrix bcirc () is

Yy ymn Ly

y(2) y(l) - y(3)
bcirc (YY) = . ) ) . . @)

P Po=1) )

Given two third-order tensors A € R™M*MX"3 and B €

R™2>m>13 - their f-product is defined as
E=AxB = fold (bcirc (A) - unfold ()) (8)

where £ € R™1>*">*"3 [39], A tensor is said to be f-diagonal if
each frontal slice is a diagonal matrix [38], [40]. A third-order
tensor Q € R">MX"3 s orthogonal if it satisfies org =
Q0T = 7 € RMXM*n3_ where 7 is an identity tensor [38].
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The ¢-SVD operation imposed on A can be factorized as
follows:

A=UxS*V 9)

where U € R"1>XM>X13 and VYV e R™*"2X" gre orthogonal
tensors and § € R™*"2X" jg an f-diagonal tensor [38].
The tube of S is denoted as S (i, j,:), where 1 <i <ny
and 1 <i < ny. The tensor tubal rank of A is defined as the
number of nonzero singular tubes of S, i.e.,

rank, (A) = #{i, S (i,i,1) # 0} (10)
where A =U xS x ) [38], [39]. The TNN of A is defined as

,
Il =D 8, i, 1)

i=1

where r = rank; (A) [38], [39].

The discrete Fourier transform of a finite sequence of n
complex numbers zg, z1,..., Zn—1 1S another sequence of n
complex numbers xg, Xi,..., X,—1 [41], which is formulated
as follows:

Y

n—1
xXj = sze_zmjk/”, O<j=<n-1).
k=0

12)

The inverse discrete Fourier transform [41] is given by the
formula shown below:

1 n—1
Zj =~ Zxke%njk/n.
n
k=0

The functions of the discrete Fourier transform and the inverse
discrete Fourier transform can be called using the MATLAB!
commands fft and ifft, respectively.

To find a low-tubal-rank approximation of 4, the following
objective function can be formulated:

13)

min
XGRVL] X)lz Xl’l3

1
?»IIXII*+§||X—AII%- (14)
The solution to Eq. (14) can be calculated by means
of a proximal operator of the matrix nuclear norm. The
tensor-singular-value thresholding (#-SVT) operator is such a
proximal operator that is given as follows:

D, (A =Ux*S), %V (15)

where S, = ifft ((6—‘ — A)+ L1, 3), S is a real tensor, i fft is
a MATLAB command and (¢); = max(t, 0) [38]. The details
of the #-SVT operator are given in Algorithm 1 [38].

C. IMVC Techniques

Consider a set of incomplete multiview data
{(X® e R&>" v =(1,2,...n,)} with n samples and c
clusters, where X) represents the vth view of the incomplete
multiview data and d, is the dimensionality of the instances
in the vth view. Each view X® contains n instances,
ie., X0 = [xgv),xgv), ...,Xf,v)]. To represent the missing

1 https://www.mathworks.com/

4119

instances in the wvth view, a diagonal indicator matrix
M® e R"™" ig defined as follows:

f 16)

@ _ | 1, instance x” is in the v-th view
h 0, otherwise.

The existing instances of the incomplete multiview data are

Ny
represented by {X;U) € Rd“XNU} , where N, represents the

v=1

number of existing instances available in the vth view. The
index matrix Mg”) e RM*" consists of the rows of M®)
corresponding to the existing instances.

Recently, numerous tensor-based IMVC methods have been
proposed for identifying high-order correlations of incomplete
multiple views [22], [28], [29]. For example, one representa-
tive tensor-based IMVC model uses a particular tensor norm to
characterize the intrinsic structure of the incomplete multiview
data: the VCL method employs the tensor Schatten p-norm
to characterize low-rank structure embeddings in similarity
graphs [29]. The self-expressiveness property of the data
instances is used to learn the affinity matrix in each view.
Specifically, each existing data instance can be represented by
a small number of other existing data instances. The objective
function of the VCL method is formulated as follows:

ny

MM L
min ZIP+2r (H(”), F) A HE(”)
Z® E® HV) F UZZ; ” ”* + ) + UZZ; 2

1

ny

T
+> hatr ((H<”>) L(”)H(”))
v=1

st XW =XWZ® L gV 201, =1,, 0<Z® <1,

zY =0, (H(”))TH(”) — I, FTF=1, (17)
where E® is the noise term, || Z||Y is the tensor Schat-
ten p-norm of the tensor Z, Z") e RN >N denotes the
self-expressiveness coefficient matrix, the function I" (-) mea-
sures the disagreement between a clustering indicator matrix
F € R" ¢ and a spectral embedding matrix H®) e R"*¢,

E(v) c RNoxNy

T_,
(Mﬁv)) L(U)Mﬁv). In Eq. (17), the strategy of filling with
zeros is transferred from the original incomplete multiview
data to Laplacian graph regularization. Hence, IMVC still
faces two major challenges: fusing the information of the
incomplete multiple views and dealing with missing instances
in the incomplete multiview data.

is the Laplacian matrix of ZW, and L® =

ITI. SPECTRAL EMBEDDING FUSION

In this section, we present a USETL framework that per-
forms spectral embedding fusion for IMVC. The spectral
embedding fusion of multiple similarity graphs and spectral
embedding tensor learning are integrated into the proposed
USETL framework. The spectral embedding fusion of multiple
similarity graphs can be performed at two different data levels.

A. The USETL Framework

The challenge of IMVC is to fuse the information of incom-
plete multiple views to explore consistent and complementary
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information among those incomplete multiple views. In the
proposed USETL framework, information fusion of incom-
plete multiple views can be implemented by capturing the
intrinsic structure of the incomplete multiview data. Suppose
that a given set of multiple similarity graphs {W®}™" e
R"*" ig constructed from incomplete multiple views, where
H® and L™ are a spectral embedding matrix and a normal-
ized Laplacian matrix, respectively, corresponding to the vth
view.

To mitigate the detrimental impacts on clustering perfor-
mance caused by noise, corruption and redundant information
in the incomplete multiview data, information fusion is per-
formed in the spectral embedding space. Ideally, the inner
product of the spectral embedding matrix H®), H® (H("))T,
is a low-rank matrix consisting of ¢ diagonal block submatri-
ces, according to spectral embedding theory [19]. To explore
the high-level correlations among the different views, we inte-
grate the spectral embedding matrices into a third-order tensor.

ny
Specifically, we stack {H(”) (H(”))T} into the third-order

tensor H € R"*"*"v_The first frontal slices of H are nxn low-
rank matrices, where each individual frontal slice corresponds
to a specific view. To inves’gigate cross-view correlations,
we take 7 = {H(”) (H(“))T} vl e R ag a surrogate
V=
for H, where first frontal slices of 7 are n x n, matrices.
Thus, the third-order low-rank tensor 7 can be considered as
a reasonable constraint for spectral embedding tensor learning.
As stated previously, our USETL framework incorporates
both spectral embedding fusion of multiple similarity graphs
and spectral embedding tensor learning. The general objective
function of the USETL framework is formulated as follows:

ny

ITh, 4o or ((H(”))TL(U)H(U))
v=1
+ Bf (F H®, R(u))

5., (H<”>)TH<“> —1, (R(“))TR(“) —1,

min
F.R®) H®

(18)

where o« and B are two trade-off parameters, F is the result
of information fusion, R®) € R¢*¢ denotes a spectral rotation
matrix for the vth view, and f (-) represents the information
fusion operation.

Within the USETL framework, we propose two different
schemes for the spectral embedding fusion of multiple simi-
larity graphs, which are performed at two different data levels,
i.e., the spectral embedding feature level and the clustering
indicator level. The details of these two schemes are given as
follows.

1) The Spectral Embedding Feature Level: Inspired by
learning the binary clustering indicator matrix in Eq. (3),
we exploit spectral rotation to search for a fused clustering
indicator matrix at the spectral embedding feature level. Given
the individual spectral embedding matrices of multiple views
{H(”)}:”: |» we perform spectral embedding fusion of multiple
similarity graphs by introducing spectral rotation. Mathemati-
cally, the operation of spectral embedding fusion at the spectral

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024

embedding feature level can be formulated as follows:

ny 2
min > [F - HOR®
F.R® £

V=

F

s.t. (R(”))TR(”) —L, FTF=1, (19)
where F € R" ¢ represents a fused clustering indicator
matrix. The matrix F is an approximate result obtained by
minimizing the difference between itself and each rotated
spectral embedding matrix H®). The matrix R®") establishes
rational interactions between F and H®™, thereby guarantee-
ing a reasonable approximation relationship between F and
H®. Accordingly, the corresponding expression for spectral
embedding fusion can be integrated into Eq. (18) as follows:

ny T
ITh e or ((n(v)) L<v>H<v>)
v=1

B R
+EZ;HF—H R
V=

min
F,R® H®)

2
F

T T
5.1, (H(”)) HY =1, (R(”)) R® =L, FTF=1L.
(20)

The spectral embedding fusion scheme expressed in Eq. (20)
yields the fused clustering indicator F, which captures com-
plementary information from multiple views.

2) The Clustering Indicator Level: Instead of learning a
fused clustering indicator matrix as in Eq. (19), we can
employ spectral rotation to yield a binary clustering indicator
matrix for the spectral embedding fusion of multiple similarity
graphs at the clustering indicator level. This strategy combines
spectral embedding fusion and the subsequent application of
the k-means algorithm into one step. Combined with Eq. (3),
the operation of spectral embedding fusion at the clustering
indicator level can be expressed as

al —1/2 2
min > HY(YTY) —HYR®
Y.R® v=I1

F

T
st Y €01}, Yide=1, (R<v>) RV =L, (1)

where Y € R"*¢ is an approximate discrete solution repre-
senting the clustering indicator matrix, with each individual
element having a value of either 0 or 1. In particular,
Y(YTY)fl/2 is regarded as a scaled clustering indicator
matrix. Accordingly, an alternative objective function can be
formulated as follows:

ny T
1Tl oS ((H<v>) L(”)H(”))
v=1

2

min
Y, R® HW)

g o
+5 ;

s.t. (H(”))TH(”) =IL. (R(”))TR(”) =L,
Yij {01}, Yidle=1.

Y(YTY)_I/Z — HWR®

F

(22)
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As observed in Eq. (18), the USETL framework unifies
these two schemes to spectral embedding fusion and the search
for high-level correlations among different views, which are
based on spectral rotation and spectral embedding tensor
learning. Spectral embedding fusion plays an essential role in
the fusion of information from incomplete multiple views. For
incomplete multiview data, the results of spectral embedding
fusion among multiple views can be obtained at two different
data levels, i.e., the spectral embedding feature level (SEFL)
and the clustering indicator level (CIL). Hence, the USETL
framework contains two corresponding spectral embedding
fusion methods, namely, USETLggFr, and USETLcr..

B. Initialization of {L(”)}n” {H(”)}n” and Y

Given a set of incomplete multiview data {X(”)}v 1
we need to initialize {L(U)}u:l’ {H(”)}Z”:1 and Y for Egs. (20)
and (22). It is crucial to choose a proper strategy for dealing
with missing instances. Numerous existing IMVC algorithms
perform imputation on missing instances or fill in missing
instances with zeros or mean values. In contrast to these
strategies for missing instances, the missing instances are
directly removed from the incomplete views in our proposed
USETL framework.

For each view X\, we first construct a corresponding
similarity matrix Zﬁv) e RMo*Mo ysing the adaptive neighbor
graph learning (ANGL) method [42]. The ANGL method
exploits the local connectivity among high-dimensional data
instances to construct the similarity matrix. Considering two
instances x[(”) and x(/.") in X', the objective function of the
ANGL method is formulated as follows:

(v)

Z(U) F

s.t. zl.(]’.’) >0, ZH)T1, =1 (23)
where y is a balance parameter and Z; is the ith column
of Z". Each element Z.(’.)) of Z\" represents the similarity

(v)

between the correspondlng instances x; = and xg.v). Because

ZS v) may not be symmetric, we perform a symmetrization step

on it, i.e.,
T
70 (Zﬁ“ +(z) )/2

Then, to obtain a full similarity matrix ZW e R"™" each
element in Zﬁv) is assigned in accordance with the posi-
tions of the existing instances in the corresponding view.
The remaining elements in Z® are filled in with zeros.
Next, H®) and L™ are initialized as the spectral embedding
and the normalized Laplacian matrix, respectively, of Z®)
in Eq. (2). Finally, we apply the k-means algorithm to the
aggregated matrix Hy,,,, which is the sum of {H(”)}zvzl, ie.,

(24)

ny
Hyym = >, H®, to derive discrete clustering partitions. These

v=1
clustering partitions are utilized to initialize the clustering
indicator matrix Y.
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C. Optimization

We present an alternating iterative optimization procedure
based on the alternating direction method of multipliers
(ADMM) framework [43] to solve the optimization problems
in Egs. (20) and (22). For the first objective function, we intro-
duce an auxiliary tensor variable G € R " into Eq. (20).
Thus, the optimization problem in Eq. (20) can be converted
into the following equivalent problem:

min

ny T
n 101 +a > (V) Lom)
F.RO.H® .G ~

S.t. (H(v))TH(v) = Ic, (R(U))TR(U) = IC’
F'F=1, G="T.
(25)

The augmented Lagrangian function in Eq. (25) is

ny T
£ (F.RV.HY.G) =Gl +a Y 1r ((H<v>) L(”)H(”))
v=1

S 2
Lid F — HOR®
+ 2 Z ” F

+ (R, T - QH— 17 -Gz

(26)
where R € R">" ig a Lagrange multiplier, and u > 0 is
an adaptive penalty parameter. Furthermore, the augmented

Lagrangian function of Eq. (26) can be transformed into the
following equivalent function:

ny
L (F, R(v), H(U), g) :“g”* ta Elr ((H(U))TL(U)H(U)>

S 2
id F — HOR®
+ 2 Z H F
v=1
Lk

2
()
2 I

The optimization problem in Eq. (27) can be partitioned
into four subproblems, which correspond to solving for four
different variables: F, R®, {H(”)}nt_ and G. Accordingly,
each of these four variables is updated alternately while the
other variables are kept fixed, until convergence is reached.

1) Subproblem of F: When R®, {H®W}™  and G are fixed,
the problem in Eq. (27) can be rewritten as

27)

F

ny P

i F — HYR® t. FIF=1. 28

ngnz; H Pl ¢ (28)
V=

Eq. (28) can be transformed into the following optimization
problem:

Ny
max F’ ZH(”)R(”) sit. FIF=1,. (29)

v=1
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Algorithm 2 Updating H") via the GPI Algorithm [44]

Input: Data matrices H®, B® and C™ and a parameter
)\max‘
1: initialize: t = 1, fy = 0, ¢ = 0.1 and maxlters = 3;
2: while not converged do
v PO = (AL~ BO) HY + C;

4:  Perform economy SVD on P(”), ie., PO =
UPE,,V;F;
s HOW = UpVg;
o f=tr ((E)PO);
7. Check the convergence condition:
8  (fr— fi-1)/ft <&
9:  if t > maxlters and converged then
10: break;
11:  end if
122 t+t+1;
13: end while
Output: H®).

The problem in Eq. (29) has a closed-form solution, namely,

F=U,V] (30)

ny
where M = > HYR® and U,, and V,, are the left and right

parts, respeclt)i;lely, of the economy SVD of the matrix M, i.e.,
M = U, %, VL [35].

2) Subproblem of (R®}" - When H®), F and G are fixed,
the problem in Eq. (27) can be rewritten as

ny
min >" |F - HOR®

2 T
st. (RV) RV =1. @1
R® F
V=
The optimization problem in (31) is equivalent to
T T T
max (R<v>) (H(”)) F s.t. (R(“)) RV =1, (32
R®

Similar to solving F in Eq. (29), the optimal solution of R®)
in Eq. (32) can be obtained as

R =U,V! (33)

where N = (H(”))TF and the economy SVD of the matrix N
isN=U,%,V..

3) Subproblem of {H"}"" : When F, R™ and G are fixed,
the problem in Eq. (27) can be rewritten as

ny T
tr ((H(”)) L(”)H(“))

min o
HW —
ﬂ 2
el ()
F
S.l. (H(v)) H(v) = IC
(34)

Setting A =G — %, Eq. (34) becomes

T T
mintr((H(”)) B(“)H<”)) —tr ((H(”)) c<v>) (35)
HV
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where B®) = oL® —

BF (R(v))T

T T
max —r ((H(”)) B(”)H(”))—}-tr ((H(“)) c<v>) (36)
HO

Setting PV = (Aggxln — B(v)) H® + CW, the problem in
Eq. (36) can be relaxed to

max tr ((H(”))TP(”)) s.t. (H(“))TH(“) =1
HO

where )L,(,fc),x is the largest eigenvalue of B®™. The optimal
solution to the problem in Eq. (37) can be obtained via the
generalized power iteration (GPI) algorithm [44]. Specifically,
it can be obtained by iteratively updating H") after an initial-
ization of H is given. The optimization procedure is outlined
in Algorithm 2.

4) Subproblem of G: When R®), F and H®) are fixed, the
problem in Eq. (27) can be rewritten as

2o (r+3)
2 w)llF

This problem can be solved by Algorithm 1 [38].
In addition, the updating schemes for the Lagrange multi-
plier R and the penalty parameter p are formulated as follows:

RO L RW 4 w(G—"T)
M < min(p[L, fmax)

%(A(”)+(A(v))T) and CV =

. Furthermore, we have

(37)

2

mgin 191 + (38)

(39)
(40)

where p and pmax are constants.

For the other objective function in Eq. (22), we adopt the
same alternating iterative optimization procedure as for the
first objective function. The main difference between the two
objective functions lies in whether F or Y is optimized.

5) Subproblem of Y: When R® and H® are fixed, the
problem in Eq. (22) can be rewritten as

v(vy) "

Y1, =1

2
—_HWYRW
F

s.t. Yij € {0, 1} s (41)

The problem in Eq. (41) is equivalent to the following opti-
mization problem:

max tr ((YTY) ]/ZYTQ)

st Y e (0.1}, Yiile =1 (42)
ny
where Q = > HYR®, Eq. (42) can be rewritten as
v=1
n
C Z yln'lqlm
max Z st.oyim€e{0,1}, Y1, =1 (43)

vV Ym Ym

where y, is the mth column of Y and ¢;;, denotes the
element in the ith row and mth column of Q. Here, Y can
be sequentially solved for row by row, and each row of Y has
a closed-form solution.

m=1
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Algorithm 3 Solving (18) Using the ADMM Framework

Algorithm 4 Algorithm for the USETL Framework

Input: Data matrices {H(U)}Z; and {L(”)}:;1 and param-
eters « and f3.
I: initialize: G =R =0, p = 1.2, gt = 1074, pimax = 105,
e =109, t = 1 and mazIters = 100;
2: while not converged do
3:  Update F via Eq. (30);
4 Update {R™ nll via Eq. (33);
5. Update {H™"} * via Eq. (37);
6:  Update G via Eq. (38);
7:  Update the Lagrange multiplier R via Eq. (39);
8:  Update the parameter y via Eq. (40);
9:  Check the convergence condition: ||G — T ||
10:  if ¢ > maxlters or converged then
11: break;
12:  end if
13: t+t+1;
14: end while
Output: F.

<&

max

Specifically, each row of Y can be obtained in accordance
with an incremental mechaniern [6], [36]. Suppose that the
optimal solution to Eq. (43) is Y in the previous iteration step
of the entire optimization procedure. Let y; be the ith row
of Y. Then, we can employ an increment of the objective
function value that ranges from y;, = 0 to y; = 1 in Eq.
(43). The incremental mechanism can be formulated as

n
Z yjmq,/'m - Qimj’}m
j=1

vﬂ?m - 5;1'm

(44)

n
Z y/mq,jm + Ggim (1 — y;m)
Jj=1

\/S;Zr;’ym + (1 - ylm)

Pim =

Let y; be the optimal solution for the ith row of Y, where
the wth element is one and the other elements are zeros. The
index w can be calculated as

(45)

w = arg max pQjny.
l<m<c

The iterative optimization procedure terminates during
iterations when the convergence condition is satisfied, i.e.,
G — T llmax < & Where ¢ is a small constant, e.g., &€ = le ©.
According to the above analysis, the optimization procedures
are similar for both of the objective functions in Eqgs. (20)
and (22). For simplicity, we summarize the entire procedure
for solving the objective function in Eq. (20) in Algorithm 3.

D. Theoretical Analysis

1) Connections Between the Spectral Embedding Fusion
Schemes at Two Different Data Levels: Algorithm 4 sum-
marizes the overall procedures of the proposed USETL
framework. In Eq. (18), f (F, H®, R(”)) represents a spec-
tral embedding fusion step for information fusion. F and Y
represent the continuous clustering indicator matrix and the
discrete clustering indicator matrix in Eqs. (20) and (22),
respectively. From the perspective of continuity, it is reason-
able to approximate F as HY'R® in Eq. (20) since FTF =1,
and (HVR™)" (HYR™) = 1.

Input: Data matrices X = {X(”) }:;1 the number of clusters
¢, the number of neighbors k, and parameters « and .

1: for v=1ton, do

2. Compute each individual affinity matrix Z(*) for X(*);

3:  Calculate the normalized Laplacian matrix L(*) and the

spectral embedding H(®) using (1);
4: end for
5: Solve (20) using Algorithm 3 and obtain the optimal
solution F;

6: Apply the k-means algorithm to F to obtain c clusters;

Output: The c clusters.

However, approximating Y as HVR®) is difficult due to the
discrete nature of Y. Fortunately, the scaled clustering indica-
tor matrix Y (YY) -y 2, denoted by Yy, can be considered as a
good surrogate for Y because (Ys)T (Ys) = 1. The surrogate
Y, guarantees a better approximation of HYR®™ in Eq. (22).
This indicates that F in Eq. (20) is a continuous solution
for the scaled clustering indicator matrix Yy in Eq. (22).
Consequently, the two proposed spectral embedding fusion
schemes within the USETL framework are closely connected,
with the same spectral rotation term, i.e., HOR®,

2) Convergence Analysis: Algorithm 2 converges to a local
maximum of the problem in Eq. (37), as previously proven
in the literature [44]. In addition, proving the convergence of
the process of solving the optimization problems in Egs. (20)
and (22) using the ADMM framework is still an open issue.
Fortunately, a locally optimal solution to each subproblem in
Egs. (20) and (22) can be obtained in each iteration. The
convergence condition |G — 7 || hax < € for these optimization
problems is often reached within dozens of iterations.

3) Computational Complexity Analysis: There are four
subproblems in Algorithm 3. In the subproblem of F, the
computational complexity of calculating the SVD of M
is O (nc?). Similarly, the computational complexity of
calculating the SVD of N in the subproblem of {R(”)}:”:1
is O (nyc®). The computational complexities of calculating
the SVD of P and the eigenvalue decomposition of P in
the subproblem of {H(”)}Z”:l are O (nvn3) and O (tlnvn3),
respectively, where #; represents the number of iterations
of Algorithm 2. The computational complexity of updating
G in the subproblem of G is O (nyn®log(n) + nin?).
The  computational  complexity of  Algorithm 3
is O (t2 (nc2 +ny,c3 + (11 + Dnyn® + nyn? log (n) + n%nz)),
where , represents the number of iterations of Algorithm 3.
Similarly, the computational complexities of initializing
{L@Y™ and {HV}"' in Algorithm 4 are O (n,n?) and
@ (cnvnz), respectively. The final computational complexity
of Algorithm 4 is O(tn3) if n, <« n and ¢ K n, where
t = ti1tp. In addition, the computational complexity of
updating Y in the subproblem of Y is O (nc). Hence, the final
computational complexity of Algorithm 4 remains unchanged
when the updating scheme of F is replaced with that for Y.

4) Discussion: An end-to-end framework for graph-based
MVC usually merges the three stages of constructing similarity
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TABLE I

STATISTICS OF EXPERIMENTAL DATASETS
Dataset Clusters Views Data samples
MSRC-v1 7 5 210

Data types
Object images

Flower17 17 7 1,360 Object images
COIL-20 20 3 1,440 Object images
100leaves 100 3 1,600 Plant properties
Handwritten 10 6 2,000 Digit images
Scene-15 15 3 4,485 Scene images

matrices, fusing spectral embedding matrices, and cluster
partitioning into a single stage [4], [6]. For example, the
consensus one-step multiview subspace clustering (COMVSC)
method jointly optimizes subspace learning, the fusion of
spectral representations and cluster partitioning [4]. Compared
with COMVSC, our proposed embedding fusion schemes
have two main advantages. On the one hand, the high-order
correlations of spectral embeddings among multiple views
contain a rich variety of consistent and complementary infor-
mation. The spectral embedding fusion of multiple similarity
graphs is implemented by means of spectral rotation, which is
conducive to producing the distinct diagonal block submatrices
in HW (H(”))T. On the other hand, the fusion of the spectral
embedding matrices is independent of the construction of
the similarity matrices. Thus, the computational efficiency of
solving the optimization problems can be improved under the
USETL framework since the optimization process does not
involve solving for the similarity matrices.

IV. EXPERIMENTS

In this section, we conducted extensive experiments to
evaluate the performance of USETLggrr, and USETLcyy,. The
source code for USETLggrr, and USETL ¢y, was implemented
in MATLAB 2021b. The MATLAB source code is available
online.? All of the experiments were conducted on a Windows
10 workstation with an Intel Core i7-10700 CPU and 32 GB
of RAM.

A. Experimental Settings

1) Datasets: The two spectral embedding fusion meth-
ods were experimentally evaluated on six publicly available
multiview datasets. The statistics of the datasets used are sum-
marized in Table II. Descriptions of these multiview datasets
are given below.

o MSRC-v1? dataset: This dataset consists of 210 scene
recognition images in 7 classes. Each image is repre-
sented by five different feature sets.

o Flowerl7 dataset [45]: This dataset contains
1,360 flower images in 17 categories. Each image
is represented by seven feature sets.

¢ COIL-20 dataset [46]: This dataset consists of
1,440 images in 20 classes. Each image is represented
by three different feature sets.

o 100leaves dataset [47]: This dataset consists of
1,600 samples of 100 plant species. Shape descriptor, fine
scale margin and texture histogram features have been
extracted to represent each sample.

2https://codeocean.com/capsule/6355940/tree/v2
3 https://www.microsoft.com/en-us/research/project/image-understanding/
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o« Handwritten dataset [48]: This dataset contains
2,000 handwritten images of the digits O to 9. Each image
is represented by six different feature sets.

o Scene-15 dataset [49]: This dataset contains 4,485 scene
images in 15 categories from both indoor and outdoor
environments. Each image is described by three features.

2) Comparison Methods: To validate the superiority of
the proposed USETL framework, we compare USETLgEFL
and USETLcyy, with several state-of-the-art methods, includ-
ing CGL [17], unified one-step multiview spectral cluster-
ing (UOMSC) [6], high-order correlation-preserved MVC
(HCPMC) [22], GPCRL [20], GSR [28] and ASR [1].
Moreover, we consider two baselines for comparison. Specif-
ically, we apply a standard spectral clustering (SC) method,
NCut [19], to individual similarity matrices corresponding to
each incomplete multiple view and to an accumulated affinity
matrix calculated by aggregating all similarity matrices. These
two baselines are called as the best single view (BSV) method
and the SCpgg method. The restrictions on the similarity
matrix for these baselines are the same as those for the pro-
posed USETL framework. In CGL and UOMSC, the missing
entries in the similarity matrices are filled in with zeros. The
source codes of the other competing methods were provided
by their authors.

3) Evaluation Metrics: Following previous work [14],
we employ three standard evaluation metrics to evaluate the
clustering performance of all competing algorithms, the clus-
tering accuracy (ACC), the normalized mutual information
(NMI) and the F-measure. These metrics provide a compre-
hensive evaluation of all methods considered for comparison
by measuring various properties of the clustering results.
For each evaluation metric, a higher value indicates better
clustering performance in the experiments.

4) Parameter Settings: The proposed USETL framework
has two parameters, ¢ and B. The values of both of
these parameters were chosen from {16_3, 5e_3, 0.01, 0.05 ,
0.1,0.5,1,5} in a grid search strategy. The parameter k,
which represents the number of nearest neighbors in the
ANGL method, was tuned in the range of {5,7, 10, 15} for
the COIL-20 and Scene-15 datasets, whereas for the other
datasets, we set k = 5 in the ANGL method. We repeated
each experiment 10 times, and the mean values and standard
deviations are reported. For the competing methods in which
the k-means algorithm is applied in the final step, to ensure
fair comparisons, we report the best clustering results obtained
by tuning the parameters of these methods. The best and
second-best mean values of the clustering results are shown
in bold and underlined, respectively.

We first employed all the instances available in all views.
Then, a certain percentage of the instances were randomly
removed from each view. Specifically, the percentage of miss-
ing instances in each view was varied from 10% to 50% in
intervals of 20%. In addition, the true number of clusters was
assumed to be known for each dataset.

B. Performance Evaluation

The clustering results of all methods on the six multiview
datasets are reported in Table III. The SCpge method achieves
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CLUSTERING RESULTS (MEAN=£STD.) OF DIFFERENT METHODS ON S1X MULTIVIEW DATASETS WITH VARIOUS MISSING DATA RATIOS

Datasets

Methods

ACC

NMI

F-measure

0 10% 30% 50%

0 10% 30% 50%

0 10%

30% 50%

MSRC-vl

BSV
SCage
UOMSC
CGL
HCPMC
ASR
GPCRL
GSR
USETLsgrL
USETLcn,

78.5710.00 64.2910.00 54.2910.00 45.52+0.46
82.71£1.23 81.9£0.00 80.4840.00 70.4840.00
90.484+0.00 69.05+0.00 50+0.00 32.86%0.00
100£0.00  90+0.00 86.67+0.00 36.1+0.01
87.6240.00 86.1940.00 82.864-0.00 79.524-0.00
91.940.00 92.864-0.00 87.144-0.00 80.484-0.00
89.5240.00 88.5740.00 83.334+0.00 81.1+0.84
99.05+0.00 9940.15 98.5740.00 94.76+0.00

1000 1000 100+0 99.5240
1000 1000 1000 1000

68.0440.00 55.13+0.00 44.1640.04 34.551+0.59
72.5241.56 72.7240.00 69.1940.00 58.724+0.00
81.8540.00 67.5240.00 40.7840.00 19.3£0.00
100£0.00 84.5140.00 81.631+0.42 28.69+0.95
78.0110.00 75.961+0.00 71.940.00 64.8410.00
84.7540.00 85.3640.00 77.0140.00 67.1840.00
82.2540.06 80.91+0.24 73.3740.00 68.7440.47
98.1940.00 98.08+0.34 97.124-0.00 92.36+0.00
10010 1000 1000 98.9240
1000 1000 1000 1000

78.194+0.00 65.440.00
82.73£1.15 81.2440.00
81.7840.00 70.7540.00
100£0.00 81.5440.00
87.5640.00 86.0840.00
91.940.00 92.8340.00

89.3740.00 88.43+0.07 83.58+00.07

99.05+0.00 99+0.16

60.4140.01
79.98+0.00
54.65+0.00
78.261+0.38
82.7440.00
87.3540.00

49.06£0.3

69.2740.00
36.1£0.00

26.351+0.63
80.1840.00
81.431+0.00
81.061+0.81

98.554+0.00 94.7140.00

1000 1000
1000 1000

100£0
100+0

99.524+0
1000

Flowerl7

BSV
SCAgg
UOMSC
CGL
HCPMC
ASR
GPCRL
GSR
USETLsgrL
USETLcy,

42.21£0.75 36.6840.1 28.88+0.51 22.74£0.28
42.540.51 46.0540.73 44.3140.27 45.4640.16
61.0310.00 54.0440.00 38.0140.00 26.91+0.00
87.4940.00 63.6340.02 13.0940.01 12.1£0.00
561+0.36 54.884+0.59 52.06+0.38 46.31+0.1
68.2710.19 64.591+0.17 62.071+0.26 52.17+0.22
54.624+0.58 51.11+0.94 50.74+£1.3 47.43£1.8
92.0940.27 91.4240.05 91.631+0.05 91.33+0.05
94.8510.06 94.88+0.08 92.943.73 94.731+0.31

43.14£0.55 39.7£0.1 31.03£0.27 26.04=£0.11
46.15+0.21 48.3+0.4 46.771+0.31 42.46£0.16
60.5110.00 52.6140.00 40.48+0.00 26.774+0.00
88.2940.04 68.1+£0.27 6.584+0.5 51.4+0.14
56.11+0.24 55.440.33 52.0610.44 44.9410.06
65.631+0.20 61.941+0.16 58.840.23 48.140.32
53.6410.39 51.4940.65 50.554+0.79 47.34+0.39
91.2240.29 89.4440.08 89.251+0.06 89.131+0.08
93.484+0.06 93.24£0.1 92.5941.45 93.154+0.28

449+0.6 41+£0.17
46.6+0.25 50.224+0.91
43.852£0.00 35.92+0.00
80.8840.05 53.88+0.44
60.7910.31 59.4510.45
71.161+0.17 68.17£0.2
574039 53.2940.96
92.1£0.27 91.4440.05
94.844-0.06 94.891-0.08

34.2240.48
48.741+0.33
25.06+0.00
6.86£0.18

56.461+0.51
64.78+0.26
53.41+1.57
91.63+0.05
93.424+2.66

27.641+0.19
48.04+0.4
15.78+0.00
6.61+0.07
49.79+0.15
55.56+0.19
51.074+0.86
91.3440.05
94.731+0.31

95.514+0.00 9540.00 95.3740.00 95.96+0.00

93.9340.00 93.57+0.00 93.69+0.00 94.44+-0.00

95.5140.00 94.99+0.00

95.371+0.00 95.95+0.00

COIL-20

BSV
SCage
UOMSC
CGL
HCPMC
ASR
GPCRL
GSR
USETLsgrL
USETLcn,

85.0310.75 84.38+1.03 64.2241.16 46.6440.85
85.87+1.1 86.27£1.22 76.47£1.04 68.64=£2
80.6940.00 80.424-0.00 65.564-0.00 37.364-0.00
90.1540.00 86.8140.00 59.1940.01 31.61+0.01
74.0110.27 75.471+0.49 72.384+0.05 61.42+2.09
87.7640.71 92.9940.00 79.0840.72 72.67+1.18
88.9840.06 84.964+0.04 83.97+1.94 78.15+2.14
99.3140.00 99.93+0.00 97.484+-2.62 98.7+0.17
97.811+0.14 98.1440.54 96.554+2.72 97.584+3.77
100£0.00 99.031-0.00 97.64+0.00 96.11+0.00

92.0510.44 84.1440.62 65.931+0.45 51.56+0.35
94.3140.63 95.751+0.48 85.7411.02 74.551+0.58
92.68+0.00 88.7910.00 79.314-0.00 50.93+0.00
94.5440.00 92.7940.00 57.731+0.33 28.374+0.32
81.5540.3 81.93+0.31 79.93+£0.11 66.55+1.21
95.58+0.43 97.13+0.00 87.02+0.52 75.95+0.63
91.631+0.19 89.691+0.01 86.86+1.07 82.07+0.79
99.0740.00 99.88+0.00 96.26+1.26 98.13+0.23
96.7440.20 97.144+0.71 95.88+1.13 97.354+2.31
100-£0.00 98.354-0.00 96.49+0.00 95.36+-0.00

87.3940.75 87.37£1.11
88.9340.36 89.8440.74
81.6640.00 79.48+0.00
89.81+0.01 85.23+0.00
75.131+0.15 75.374+0.37
90.9640.74 94.97+0.00
89.03+0.1 86.05+0.04
99.314-0.00 99.931-0.00
97.811+0.14 98.141+0.54
100£0.00 99.031-0.00

69.9410.87
81.1741.08
65.11+0.00
43.81+0.68
75.99+0.7
82.5140.00
84.38+1.08
97.63+2.14
96.8+1.92
97.64+0.00

53.03+0.46
73.854+1.47
27.6240.00
17.31£0.28
67.11+1.84
77.240.00
80.4 £1.21
98.7+0.17
97.7343.27
96.1140.00

100leaves

BSV
SCAgg
UOMSC
CGL
HCPMC
ASR
GPCRL
GSR
USETLggrr
USETLcL

63.15+1.3 56.5941.48 42.4941.08 31.454-0.64
74.344+1.31 70.8441.13 54.9441.11 38.861+0.88
99.384-0.00 78.38+0.00 45.754-0.00 28.38+0.00
100£0.00 92.2140.01 74.5440.01 49.861+0.01
77.74+1.68 73.47£1.3 56.384+0.96 39.61+0.79
86.4141.09 78.0440.73 56.3140.81 40.5240.32
86.66+2.22 84.58+1.99 81.21+1.76 80.3+1.6
98.2+£0.78 97.5540.37 94.7140.89 87.734+0.93
95.5441.27 93.851+0.66 91.61+1.63 89.844+1.03
100£0.00 99.94+-0.00 97.941-0.00 96.44+-0.00

82.5440.25 76.5740.58 64.574+0.66 56.240.4
83.46+0.44 80.65+0.24 68.254+0.24 56.931+0.44
99.544-0.00 88.8740.00 71.8740.00 59.36+0.00
100£0.00 95.7840.17 84.244+0.15 69.171+0.34
89.1540.89 85.9340.59 73.9140.38 61.9240.33
95.1440.49 89.38+0.42 74.34£0.3 62.65+0.44
88.65+0.66 85.11+0.6 83.7940.55 81.154+0.52
99.5740.13 99.374+0.07 98.240.32 95.440.29
99.024+0.3 98.68+0.16 97.5640.33 96.4240.38
100-£0.00 99.951-0.00 98.33+-0.00 97.88+-0.00

66.141+0.82 61.64+1.29
76.25+1.25 72.7£0.81
98.731+0.00 68.540.00
100£0.00 87.761+0.09
79.631+1.52 75.27+1.25
88.8340.92 80.9940.64
83.82+1.79 81.65+1.58
98.751+0.5 98.2740.25

51.04+1.02
55.324+0.86
53.261+0.00
59.8240.61
59.08+0.82
60.941+0.69
79.98+1.38
96.01+0.57

40.940.44

42.6£0.86

32.7+£0.00

29.1610.81
43.75+0.6
46.84+0.47
78.15+1.37
89.7410.74

96.751+0.95 95.531+0.53
100-£0.00 99.941-0.00

93.58+1.16
97.941+0.00

91.96:+1.01
96.74+0.00

Handwritten

BSV
SCAgg
UOMSC
CGL
HCPMC
ASR
GPCRL
GSR
USETLSEFL
USETLcn

75.3540.00 74.2540.02 64.551+0.00 48.83+0.04
79.8540.00 85.66+0.02 79.354+0.00 73.65+0.02
98.24£0.00 70.9540.00 48.5+0.00 21.3540.00
99.5540.01 99.8540.00 32.02+0.00 15.78+0.00
81.1740.04 89.1740.05 84.1740.09 70.3140.08
93.9540.00 92.4140.13 90.8540.00 79.73+0.11
88.9540.19 87.7840.17 86.4940.05 82.3£0.09
99.851+0.00 99.740.00 99.8540.00 98.940.00
99.940.00 99.940.00 99.9+0.00 99.8540.00
100£0.00 99.951+0.00 99.940.00 99.140.00

74.0740.00 70.5840.02 62.441-0.00 46.15+0.07
82.62+0.00 84.7340.00 81.19+0.00 74.2740.03
95.88+0.00 80.851+0.00 50.8+0.00 15.89+0.00
99.531+1.04 99.594+0.00 27.71£0.1 2.4740.03
83.940.09 83.89+0.04 77.87£0.09 60.82+0.08
88.2640.00 85.7540.24 83.064-0.00 71.4740.01
81.534+0.2 79.86£0.18 78.15£0.09 75.69£0.07
99.6240.00 99.2440.00 99.5940.00 97.4440.00
99.7610.00 99.731+-0.00 99.76+-0.00 99.59+0.00
100-£0.00 99.86+0.00 99.76+0.00 98.041-0.00

75.1240.00 79.731+0.02
83.940.00 87.06+0.01
96.391+0.00 71.4£0.00
99.2740.02 99.740.00
84.9440.04 89.17+0.05
93.984+0.00 92.4240.13
88.96+0.19 87.77+0.17
99.8510.00 99.740.00
99.940.00 99.9+0.00
100-£0.00 99.95+0.00

7440.00
83.6+0.00
45.3440.00
23.861+0.08
84.3740.08

9140.00
86.5740.04
99.8540.00
99.910.00
99.9£0.00

59.0140.07
79.6+0.02

16.5940.00
10.7740.02
74.841+0.07
80.5240.11
82.41£0.11
98.9+0.00

99.85+0.00
99.14£0.00

Scene-15

BSV
SCage
UOMSC
CGL
HCPMC
ASR
GPCRL
GSR
USETLsgrL
USETLcL

38.0510.54 34.08+0.11 29.16+0.16 23.92+0.05
38.131+0.11 40.16+0.04 37.87+0.1 34.49+0.09
48.52240.00 32.06=£0.00 24.44£0.00 14.29£0.00
43.032£0.00 33.47£0.01 13.23£0.00 9.161-0.00
37.0540.07 36.36+0.05 34.6240.03 29.93+0.29
49.71£0.26 45.48+1.24 34.59+0.72 27.48+0.14
44.05+0.43 41.26£0.14 35.33£0.68 28.62+£0.43
93.7940.02 94.840.07 93.4440.02 84.92+1.62

94.17+0.1 95.2740.05 96.114-0.03 94.481-0.02
87.3840.00 89.744-0.00 88.49+0.00 91.5940.00

38.8510.07 32.08+0.06 28.531+0.44 29.07+0.03
39.3140.09 39.2440.05 35.824+0.05 28.55+0.04
52.4540.00 36.0810.00 22.46+0.00 11.7540.00
40.95+0.18 28.56£0.28 6.881+0.14 1.061-0.04
33.9540.03 32.67+0.03 27.4840.03 23.46+0.05
47.74+£0.17 39.88+£0.71 32.6£0.5 27.71£0.28
40.34+£0.12 37.96£0.13 32.940.27 25.81£0.23
91.240.03 91.1840.05 89.2140.03 84.7740.34
92.324-0.08 93.431+-0.06 94.251+-0.03 92.71+0.02
90.2340.00 93.034-0.00 91.224-0.00 90.5940.00

40.49+0.27 36.22+0.09
41.18+0.08 43.1540.04
37.3440.00 28.0410.00
30.1940.16 22.2740.28
39.2240.04 38.431+0.03
50.814+0.27 46.44£0.9
45.16+0.34 42.36£0.15
93.7840.02 94.814+0.07

33.24+0.23
40.73+0.08
18.4940.00
8.95+0.5
34.95+0.02
38.4840.27
36.234+0.67 29.71+0.31
93.4540.02 85.52+01.09

27.54£0.03
37.061+0.08
9.96+0.00
7.43+0.13
32.6340.22
31.940.22

94.2+0.1 95.310.05
88.3240.00 91.63+0.00

96.11+0.03 94.521-0.02
89.7940.00 91.6940.00

better clustering results than does the BSV method in most
cases. This finding indicates that capturing consistent and
complementary information among multiple views is worthy
of investigation. On most of the datasets, the USETLcrL
method consistently outperforms the other competing methods,
including both the state-of-the-art methods and the two base-
lines mentioned above. For example, the USETL ¢y, method
achieves performance improvements of approximately 0.95%,
1.81% and 0.95% over the second-best method (GSR) in
terms of the ACC, NMI, and F-measure, respectively, on the

MSRC-v1 dataset with a missing data rate of 0. Similarly,
the USETLggFy, method performs much better than the other
competing methods on the MSRC-v1, Flower17, Handwritten
and Scene-15 datasets. For example, the USETLggrr, method
significantly outperforms the other competing methods by
at least 2.76%, 2.26% and 2.74% in terms of the ACC,
NMI, and F-measure, respectively, on all available instances
in the Flowerl7 dataset. Moreover, we observe the same
advantages of the USETLggrr, and USETL ¢, methods as the
missing data rate gradually increases in most of the datasets.
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For example, the USETLcy, method achieves performance
improvements of approximately 3.58%, 3.74% and 4.63%
over the second-best method (GSR) in terms of the ACC on
the Flowerl7 dataset with missing data ratios of 10%, 30%
and 50%, respectively. These experimental results demonstrate
the superiority of the proposed USETLggrr, and USETLcry,
methods over the other competing methods. In addition,
USETL ¢y, performs slightly better than USETLggFy, in most
cases. This indicates that the discrete solution in the USETL
framework often provides better approximations of rotated
spectral embedding matrices than the continuous solution can.

There are three primary reasons for the advantages and
effectiveness of the proposed USETLggrr, and USETLcyL,
methods. First, we introduce spectral embedding tensor learn-
ing to explore high-order correlations among multiple views.
The introduction of a graph learning-based low-rank tensor is
beneficial for capturing consistent and complementary infor-
mation. This also explains why the GSR method achieves
encouraging clustering results on all the datasets with a
missing rate of 0. In contrast, the clustering performance of
the HCPMC method, which also involves low-rank tensor
learning, is unsatisfactory due to the lack of graph learning.
Unlike these methods, ASR employs discriminative sparse
representation learning to capture the local structures of
incomplete multiview data. It shows advantages in cluster-
ing performance over HCPMC in most cases. Second, the
two proposed schemes for the spectral embedding fusion of
multiple similarity graphs, which yield spectral embedding
fusion results at two different data levels, are implemented by
means of spectral rotation. In contrast to the CGL and GSR
methods, both spectral embedding graph learning and spectral
embedding fusion are integrated into the USETL framework.
These two spectral embedding fusion schemes yield superior
results for the fusion of multiple views using the USETLggFy,
and USETLcy, methods. In a one-step manner, USETLcyy,
shows better generalization ability than the UOMSC method
on IMVC tasks. Third, the strategy of removing missing
instances from incomplete multiple views is adopted in the
USETL framework. This is a feasible scheme for constructing
multiple similarity graphs in the USETLggpy, and USETLcyr,
methods. In most cases, the clustering performance of the
ASR and HCPMC methods slowly declines as the missing
rate increases from 0 to 50%. In comparison, the clustering
performance of the UOMSC and CGL methods decreases
dramatically as the missing rate increases.

Table IV shows the average running times of all of the com-
peting state-of-the-art algorithms on the six multiview datasets
with different missing data ratios. The computation times of
the BSV and SCyge methods are not included because they
are considered only as baselines for evaluating the clustering
performance in terms of the three standard evaluation metrics.
The GPCRL method often performs more efficiently than the
other methods. In addition, the USETL ¢y, method achieves
the best clustering performance at a running time comparable
to those of GSR, CGL and HCPMC. The running time of
USETLgEFL is approximately the same as that of USETLcyr,
for all the datasets. Notably, these methods involve SVD or
eigenvalue decomposition on a matrix of size n x n, which

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024

TABLE IV

COMPUTATION TIMES (IN SECONDS) OF DIFFERENT METHODS ON SIX
MULTIVIEW DATASETS WITH VARIOUS MISSING DATA RATIOS

Datasets [RatioUOMSC CGL HCPMC ASR GPCRL GSR USETLggpr, USETL ¢y,
0 035 276 0.88 0.69 0.12 2.67 2.69 2.73
10%| 08 2.01 058 0.59 0.09 224 1.93 1.96
MSRC-v1 30%| 0.85 221 049 04 0.09 182 1.59 1.62
50%| 0.71 2.03 0.61 0.24 0.08 1.89 1.51 1.26
0 5.56 107.9 4553 29.55 3.32 58.17 51.93 50.72
Flowerl7 10%| 10.84 106.7 49.4 2539 3.16 6581 51.95 50.77
30%| 8.79 106.5 51.18 18.95 2.69 63.27 60 58.26
50%| 9.35 1057 53.8 14.07 242 61.01 45.54 57.38
0 547 54.65 42.19 297.7 26.6 3533 20.35 30.21
COIL-20 10%| 7.97 55.83 43.55 244.2 27.77 31.09 21.98 18.32
30%| 6.82 56.25 4527 161.9 28.02 26.53 22.02 22.76
50%| 17.56 56.56 47.36 61.08 29.86 30.12 26.14 29.19
0 3.7 187 4133 64.63 093 50.63 37.73 39.73
100lcaves 10%| 9.32 166.4 41.41 5296 0.92 4686  37.7 39.81
30%| 16.53 174.1 4243 3564 09 43.12 38.32 35
50%| 14.7 162 43.74 28.79 0.88 45.79 39.83 40.54
0 13.7 239.1 99.02 50.75 2.41 178.5 1163 163.7
Handwritten 10%| 35.72 234.6 1002 44.16 211 1889 124.8 1253
30%| 36.39 2343 103.5 2692 1.6 190.2 119 121.3
50%| 30.4 2333 1048 14.12 1.37 1643 1237 118.1
0 | 60.48 663.4 6165 5139 893 3619 3326 346.4
Scene-15 10%| 131.8 662.4 618.4 391.6 8.84 370.1 350.8 288.4
30%| 149 651 621.1 2002 7.74 399.8 317.6 344.5
50%| 137 6272 6265 91.84 6.8 355.7 2932 3284

is time-consuming. Nevertheless, we observe that the running
times of the USETLgggr, and USETLcy, methods are lower
than those of the GSR and CGL methods on all the datasets.

C. Empirical Study on the Construction of Multiple
Similarity Graphs

The construction of multiple similarity graphs is a pre-
processing step for the USETL framework. For this step,
we employ the ANGL method, which requires an extra
parameter, i.e., the number of nearest neighbors k. Hence,
we investigated the effect induced by varying the number
of nearest neighbors considered in the USETLggpp, and
USETLcy, methods. The parameters o and g were set in
accordance with the USETLggrr, and USETLcq, methods
in Section IV-A.4. The number of nearest neighbors k was
chosen from {35, 7, 10, 15}. The ACC was employed to evaluate
the clustering quality under different numbers of nearest
neighbors.

Figs. 1 and 2 show that the proposed USETLggpr, and
USETLcr, methods achieve high average ACC values with
different numbers of nearest neighbors on the Flowerl7,
100leaves, and Handwritten datasets. The ACC value remains
relatively stable with varying numbers of nearest neighbors as
the missing data ratio in each dataset increases from 0 to 30%.
However, the ACC is slightly affected when the missing data
ratio increases to 50% in a few datasets, e.g., the COIL-2
and Scene-15 datasets. These findings indicate that the perfor-
mance of the proposed USETLggrr, and USETL ¢y, methods
is fairly robust to the choice of the number of nearest neighbors
in the ANGL method.

D. Parameter Sensitivity Analysis

Due to space limitations, we conducted experiments to
investigate the parameter sensitivity only on the COIL-20 and
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(b)

Fig. 1. Comparison of the ACC values of the USETLggyy, method with different numbers of nearest neighbors k on five datasets: (a) Flowerl7, (b) COIL-20,

(c) 100leaves, (d) Handwritten, and (e) Scene-15.
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Fig. 2. Comparison of the ACC values of the USETL ¢y, method with different numbers of nearest neighbors & on five datasets: (a) Flowerl7, (b) COIL-20,

(c) 100leaves, (d) Handwritten, and (e) Scene-15.
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Fig. 3. The ACC of the USETLggFy, method with different combinations of o and B on the COIL-20 dataset for various missing data ratios: (a) Ratio =0,

(b) Ratio = 10%, (c) Ratio = 30%, and (d) Ratio = 50%.

(b)
Fig. 4. The ACC of the USETLggyy, method with different combinations of « and 8 on the Handwritten dataset for various missing data ratios: (a) Ratio = 0,
(b) Ratio = 10%, (c) Ratio = 30%, and (d) Ratio = 50%.

Handwritten datasets. The parameters « and § were chosen
from {0.01, 0.05, 0.1, 0.5} for USETLgEgFr,, whereas they were
chosen from {0.05,0.1,0.5, 1} and {le=3, 5¢73,0.01, 0.05},
respectively, for USETLcyy,. We also set k = 5 in accordance
with the information in Section IV-A.4. The ACC values of
the USETLggrr, and USETLcy, methods are reported with
respect to different combinations of o and .

Figs. 3-6 show the clustering performance of the
USETLggrr, and USETLcyp, methods in terms of the ACC
for different combinations of o« and S on the COIL-20
and Handwritten datasets. As seen from Figs. 3 and 4, the
USETLggrL, method can achieve stable performance in most
combinations when the missing data ratio is 0. However,
poor performance may be achieved when both « and S
are very small, e.g., « = 0.01 and 8 = 0.01. This is
mainly because the corresponding regularization term have
very little influence if @ and B in Eq. (18) are very small.
As also shown in Figs. 5 and 6, the clustering performance
of the USETLcy method fluctuates slightly with different
combinations of o and B. In addition, an increase in the

ACC
ACC

(©)

(d)

missing data ratio from 0 to 50% only slightly affects the
ACC for the USETLgggr, and USETLcyr, methods. In these
experiments, the various specified percentages of instances
were randomly removed from each view when constructing
multiple similarity graphs. Therefore, the experimental results
illustrate the effectiveness of the strategy of constructing
multiple similarity graphs for incomplete multiple views.

E. Convergence Analysis

To validate the convergence of the USETLggrr, and
USETLcy, methods, we computed the values of the conver-
gence condition ||G — 7 |,.x during the iterative process of
each method. Figs. 8 and 7 show the convergence curves of the
proposed USETLggrr, and USETLcpr, methods, respectively,
on all datasets with different missing data ratios. In most cases,
the convergence condition values of the proposed methods
slowly decrease before the first 30 iterations and then drop
dramatically until convergence. However, we also observe
that a few convergence curves fluctuate several times before
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Fig. 5. The ACC of the USETLcyy, method with different combinations of o and B on the COIL-20 dataset for various missing data ratios: (a) Ratio = 0,
(b) Ratio = 10%, (c) Ratio = 30%, and (d) Ratio = 50%.

ACC
ACC
ACC
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% (é) o % 100 o8 %5 (b) ) .(C) % o 8 % (d) o

Fig. 6. The ACC of the USETL ¢y, method with different combinations of « and B on the Handwritten dataset for various missing data ratios: (a) Ratio = 0,
(b) Ratio = 10%, (c) Ratio = 30%, and (d) Ratio = 50%.
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Fig. 7. Convergence results of the USETLggFy, method on all datasets with various missing data ratios: (a) Ratio = 0, (b) Ratio = 10%, (c) Ratio = 30%,
and (d) Ratio = 50%.
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Fig. 8. Convergence results of the USETLcyy, method on all datasets with various missing data ratios: (a) Ratio = 0, (b) Ratio = 10%, (c) Ratio = 30%,
and (d) Ratio = 50%.

convergence, especially for relatively large missing data ratios, fusion methods, USETLggrr, and USETLcyL, respectively.
e.g., ratio = 50%. One reason is that the value converges to a  An alternating iterative optimization procedure is used to solve
local minimum in each step in the proposed methods. Second, the two corresponding objective functions. The redundant
the differences between different initializations of {H(”)}Z":1 information in the original incomplete multiview data is effec-
become more significant as the missing data ratio increases. tively removed when performing spectral embedding fusion
Nevertheless, the number of iterations before convergence is at these two data levels. Simultaneously, spectral embedding
always in the dozens for the proposed methods. This demon- tensor learning is introduced to find high-order correlations

strates that the proposed methods exhibit stable convergence among multiple views. This is conducive to capturing consis-
tent and complementary information among multiple views.

Moreover, multiple similarity graphs are constructed using
V. CONCLUSION the ANGL method, and in this construction process, the
missing instances are removed from the incomplete mul-
tiple views. The two proposed spectral embedding fusion
methods are robust to the construction of multiple similar-
ity graphs. Extensive experiments conducted on multiview
datasets demonstrate the superiority of these two spec-
tral embedding fusion methods over several state-of-the-art

behavior.

In this paper, we propose the USETL framework for IMVC,
which integrates the spectral embedding fusion of multiple
similarity graphs and spectral embedding tensor learning.
Within the USETL framework, we exploit spectral rotation to
perform spectral embedding fusion at two different data levels,
i.e., the spectral embedding feature level and the clustering
indicator level, which correspond to two spectral embedding approaches.
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