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Cross-modal Retrieval with Noisy Correspondence
via Consistency Refining and Mining

Xinran Ma∗, Mouxing Yang∗, Yunfan Li, Peng Hu, Jiancheng Lv, Xi Peng†

Abstract—The success of existing cross-modal retrieval (CMR)
methods heavily rely on the assumption that the annotated
cross-modal correspondence is faultless. In practice, however, the
correspondence of some pairs would be inevitably contaminated
during data collection or annotation, thus leading to the so-
called Noisy Correspondence (NC) problem. To alleviate the
influence of NC, we propose a novel method termed Consistency
REfining And Mining (CREAM) by revealing and exploiting the
difference between correspondence and consistency. Specifically,
the correspondence and the consistency only be coincident for
true positive and true negative pairs, while being distinct for
false positive and false negative pairs. Based on the observation,
CREAM employs a collaborative learning paradigm to detect
and rectify the correspondence of positives, and a negative
mining approach to explore and utilize the consistency. Thanks
to the consistency refining and mining strategy of CREAM,
the overfitting on the false positives could be prevented and
the consistency rooted in the false negatives could be exploited,
thus leading to a robust CMR method. Extensive experiments
verify the effectiveness of our method on three image-text
benchmarks including Flickr30K, MS-COCO, and Conceptual
Captions. Furthermore, we adopt our method into the graph
matching task and the results demonstrate the robustness of our
method against fine-grained NC problem. Our code is available
at https://github.com/XLearning-SCU/2024-TIP-CREAM.

Index Terms—Robust cross-modal retrieval, noisy correspon-
dence, multi-modal learning, graph matching.

I. INTRODUCTION

CROSS-MODAL retrieval (CMR) [2]–[6] aims at match-
ing associated samples across different modalities, which

has attracted increasing attention from both academic and
industry communities. The key of CMR is to bridge the
modality gap, hoping similar cross-modal samples would
gather together in the feature space. To this end, most existing
works [7]–[12] aim to learn the cross-modal consistency from
the correspondence of associated (i.e., positive) pairs. Al-
though achieving promising performance, these works heavily
rely on the assumption that the annotated cross-modal corre-
spondence is faultless. In practice, however, it is daunting and
even impossible to precisely annotate all data pairs, and thus
the assumption is always violated. In particular, most modern
cross-modal data is crawled from the Web [1], [13], [14].
As a result, it is inevitable to wrongly treat some unrelated
pairs (i.e., False Positives, FPs) as associated, leading to the
so-called Noisy Correspondence (NC, see Fig. 1(a)) problem.
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(a) Noisy Correspondence

(b) Diverse Potential Consistency

Fig. 1. Illustrations of the NC problem and our observations. (a) Noisy
Correspondence (NC): the dataset consists of both true and false positive pairs,
while the ground truth is agnostic. NC will reduce the consistency of positives
and mislead the optimization direction, thus degrading the performance of
CMR models. (b) Diverse Potential Consistency: give an anchor, we observe
that the consistency is different from the correspondence and with various
forms in the negative bank. As shown, the pairs with concrete consistency are
treated as negative, which however should be positive. The implicit pairs show
the consistency beyond words, and the partial pairs have the consistency at the
token instead of the instance level. Examples are selected from the Conceptual
Captions [1] dataset, and the numerical values in images imply that our model
could mine and exploit the potential consistency.

Although the importance of combating NC is obvious, there
are only a few studies have been conducted [15], [16]. To
alleviate the influence of NC, these works try to model
the association confidence of positive pairs, and accordingly
down-weight and even discard the unconfident pairs. Namely,
these unconfident pairs are probably FPs which will mislead
the model optimization.

Although these works have achieved promising perfor-
mance, we observe that they ignore the complexity of real-
world data to some extent. Specifically, the consistency could
be identical to the correspondence only for true positives
and true negatives, while being remarkably different for false
positives and false negatives. As shown in Fig. 1(b), even
though two given data points are unassociated as annotated
(i.e., negative), they could be with concrete, implicit, or partial
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consistency. Clearly, such a diverse potential consistency could
be utilized to boost the performance of NC-contaminated
models, which however has not been explored so far to the
best of our knowledge.

Based on the above observation, we propose Consistency
REfining And Mining (CREAM) for robust CMR by rectifying
possible noisy correspondence in the positive bank and exploit-
ing the diverse potential consistency in the negative bank. Our
CREAM embraces the following two merits. On the one hand,
it is able to prevent the model from fitting FPs, thus enjoying
robustness against NC. On the other hand, it complements
the consistency in negatives so that the CMR performance
could be further boosted. In detail, CREAM first computes
the association confidence for each data pair resorting to the
memorization effect [17] of Deep Neural Networks (DNNs).
Based on the estimated confidence, CREAM partitions the
pairs into clean, vague, and noisy groups for consistency
refining and mining. After that, CREAM will recalibrate the
correspondence of positives while mining and exploiting the
consistency of negatives. With the recast consistency, CREAM
employs a novel contrastive loss to achieve robust CMR
against noisy correspondence.

The contributions and novelties of this work could be
summarized as follows:
• For the first time, we reveal that the correspondence

and consistency cannot be simply treated as identical for
the cross-modal pairs. Such a new observation is largely
ignored by existing works, which however could boost
the CMR performance.

• With our observation, we propose a novel CMR method
(dubbed CREAM) that achieves robustness against the
NC through consistency refining and mining. On the
one hand, CREAM could rectify the correspondence of
positive pairs, thus preventing overfitting to NC. On the
other hand, CREAM could mine and exploit the diverse
potential consistency rooted in negative pairs.

• Extensive experiments on three widely-used CMR bench-
marks (Flickr30K, MS-COCO, and Conceptual Captions)
verify the effectiveness of our method compared with six
state-of-the-art methods.

• Beyond robustness against the instance-level image-text
NC, the experiments on the graph matching task across
three benchmarks (Willow Object, Pascal VOC, SPair-
71k) further validate the effectiveness and generality of
our method in handling the fine-grained patch-level NC.

II. RELATED WORK

In this section, we briefly review some recent developments
in four related areas, i.e., cross-modal retrieval, learning with
noisy labels, learning with noisy correspondence and con-
trastive learning.

A. Cross-modal Retrieval

CMR [2], [5], [8], [18]–[21] aims to search semantic-
relevant samples from different modalities, wherein the key
is to alleviate the modality gap. For this purpose, existing
CMR methods mainly focus on exploiting the cross-modal

consistency hidden in the correspondence of associated pairs,
so that different modalities could be bridged. According to
the strategy of exploiting consistency, the existing CMR
works could be roughly categorized into the following two
groups: i) Coarse-grained CMR methods [22]–[24], which
adopt different backbones to exact modality-specific features
and align those features from a global perspective. ii) Fine-
grained CMR methods [2], [8], [18], [25], which narrow
the modality gap through designing different fine-grained
consistency measurements such as multi-level attention [2] and
similarity graph [8], [18]. Although promising performance
has been achieved, most existing methods would suffer from
performance degradation when encountering noisy correspon-
dence as verified in the empirical results.

B. Learning with Noisy Labels

The most relevant paradigm to noisy correspondence might
be learning with noisy labels (LNL) [26]–[30] which has
attracted a lot of attention from both academic and industrial
community. Most of the existing LNL works [31]–[34] mainly
focus on combating noisy annotations in the classification
task, thus learning a robust classifier. Different from the
instance-level annotation error of standard noisy labels, noisy
correspondence refers to the pairwise association error in
the cross-modal pairs, i.e., some mis-associated pairs are
wrongly regarded as positive pairs. Clearly, the significant
paradigm difference prohibits the existing label noise methods
from handling noisy correspondence in cross-modal retrieval.
Therefore, it is desirable to develop customized methods for
learning with noisy correspondence.

C. Learning with Noisy Correspondence

Noisy correspondence refers to the mismatched pairs while
being wrongly treated as associated, drawing considerable
attention from the community. Given that many tasks and
applications require data pairs as input, customizing task-
specific methods against noisy correspondence has emerged as
a promising direction across numerous applications including
but not limited to cross-modal retrieval [15], [16], [35], [36],
person re-identification [37]–[39], graph matching [40], multi-
view clustering [41], [42], image-text pre-training [43], audio-
visual action recognition [44], image captioning [45], video
reasoning [46].

Among the aforementioned works, the most related works
could be the NC-robust cross-modal retrieval ones. Different
from them, we reveal that the correspondence is not always in
accord with the consistency, especially for the false positive
and false negative pairs. Based on this observation, CREAM
achieves robustness against NC through consistency refining
and mining. On the one hand, CREAM employs a collab-
orative learning paradigm to rectify the correspondence of
positives, so that the overfitting on FPs is eliminated. On the
other hand, CREAM explores and exploits the diverse potential
consistency, thus boosting the performance.
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Fig. 2. Overview of the proposed CREAM (best viewed in color). Given paired image-text data, based on the memory effect of DNNs, CREAM first partitions
the pairs into three types, namely, clean (green), vague (yellow), and noisy (red). After that, CREAM refines consistency for positive pairs (the strength is
indicated by thickness) to alleviate the influence of NC, while mining consistency between some correlated negative pairs (denoted by dash line) to boost the
CMR performance. Finally, with the recast consistency, CREAM adopts a novel contrastive loss, which modulates the gradient for different types of positive
pairs and reverses the gradient for some negative pairs, leading to robust CMR against NC.

D. Contrastive Learning

The contrastive learning paradigm has achieved state-of-
the-art performance recently in representation learning [47]–
[51]. The basic idea of contrastive learning is to maximize
the similarities of positive pairs while minimizing those of
negative ones. In single-modal contrastive learning, pairs are
constructed through data augmentations, such as random crop
and color distortion [47]. Samples augmented from the same
instance are treated as positive, while other samples in the
mini-batch [47] or memory bank [48], [52] are considered
as negative. In multi-modal contrastive learning, pairs are
constructed based on the correspondence between cross-modal
samples [13], [14], [53], [54]. With the pairing information
crawled from the Internet or annotated by humans, only paired
cross-modal data is defined as positive and others are treated
as negative.

The instance-level discrimination nature of contrastive
learning is favored for CMR. In this work, we propose a novel
contrastive loss that significantly differs from existing cross-
model contrastive learning works in the following two aspects.
On the one hand, considering FPs in CMR, we rectify the
weight for positive pairs to alleviate the influence of noisy
correspondence. On the other hand, instead of treating all
unpaired samples as absolutely negative, we propose to mine
the hidden associations in the unpaired data. Such an operation
helps the model to capture more cross-modal consistency
information, which further boosts the performance.

III. METHOD

In this section, we elaborate on the proposed CREAM
which consists of two modules, together with a novel objective
function to achieve robust cross-modal retrieval against noisy
correspondence. Section III-A introduces the Collaborative
Data Partition (CDP) module which divides data pairs into
three subsets based on the memory effect of DNNs. Sec-
tion III-B introduces the Consistency Refining and Mining
(CRM) module which recast the consistency from two as-
pects. Section III-C details the proposed objective function to

achieve Robust Cross-modal Retrieval (RCR). The framework
of CREAM is shown in Fig. 2.

A. Collaborative Data Partition
We first formulate the cross-modal retrieval task as follows

by taking image-text matching as an example. Given N cross-
modal image-text pairs {(Ii, Ti), yi}Ni=1, cross-modal retrieval
aims to build correlations between image and text samples
in the unlabeled test set, where yi ∈ {0, 1} is the annotated
correspondence indicating whether the i-th image Ii and i-th
text Ti belong to the same instance. Cross-modal retrieval with
noisy correspondence considers a more challenging setting
where an unknown portion of data pairs is mismatched.
Namely, some pairs (Ii, Ti) are intrinsically negative (i.e.,
yi = 0) but are wrongly labeled as positive (i.e., yi = 1).

To tackle such a problem, CREAM first identifies those
mislabeled pairs by observing their patterns in pair similarities.
Specifically, let f(·) and g(·) be the feature extractors for
images and text respectively, the pair similarity is measured
by the cosine distance s(f(Ii), g(Ti)) in the feature space,
which we abbreviate as s(i, i) for simplicity in the following.
Some pioneer works [17] have shown that DNNs are apt to
learn clean patterns first, and then gradually fit noisy ones,
which is the so-called memorization effect. Motivated by this
empirical finding, it is possible to distinguish clean and noisy
pairs by their different patterns in losses. In this work, the loss
for each image-text pair is defined by the vanilla cross-modal
InfoNCE [13] as follows,

li = − log
exp (si,i/τ)∑N

j=1 exp (si,j/τ)
− log

exp (si,i/τ)∑N
j=1 exp (sj,i/τ)

,

(1)
where τ = 0.07 is the temperature parameter fixed in all our
experiments.

To distinguish clean and noisy pairs, we fit the losses of
all pairs by a two-component Gaussian Mixture Model [26],
[55], namely,

P (l |θ) = α1φ(l |θ1) + α2φ(l |θ2) , (2)

where αk and φ(l |θk) denote the mixture coefficient and
the probability density of the k-th component, respectively.
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According to the DNNs’ memorization effect, the component
with a smaller mean value corresponds to clean pairs, and the
other component corresponds to noisy ones. The probability
of pair i belonging to the clean component is calculated by
the posterior probability as

pi = P (θk|li) = P (θk)P (li|θk)/P (li). (3)

To improve the accuracy of pair partition, we design a
collaborative partition scheme. To be specific, we construct
two identical models A = {fA, gA} and B = {fB , gB} with
different random initialization. After warming up networks A
and B by minimizing Eq. 1 for all pairs, we could obtain the
probability of the i-th pair being clean from each network,
denoted as pAi , p

B
i . Further, pair i is considered clean by

network A(B) if pA(B)
i > γ and vice versa, where the threshold

γ is set to be 0.5 in our experiments for simplicity. Based on
the agreement of two DNNs, we partition all pairs into three
groups as follows:

(Ii, Ti) ∈


Dc, p̂Ai + p̂Bi = 2,

Dv, p̂Ai + p̂Bi = 1,

Dn, p̂Ai + p̂Bi = 0,

p̂
A(B)
i =

{
1, p

A(B)
i > γ,

0, p
A(B)
i ≤ γ,

(4)
where Dc, Dv , and Dn refer to the clean, vague, and noisy
set, respectively. In other words, the pair would be regarded
as clean/noisy i.f.f. both/neither of the two DNNs agree that
the pair is highly-confident. For the rest pairs, they would be
treated as vague due to the disagreed judgment between the
two DNNs.

B. Consistency Refining and Mining

After partitioning data pairs into three groups, we apply
different strategies to recast the consistency based on the char-
acteristics of each group. The consistency recast is conducted
dually and composed of consistency rectification for positive
pairs as well as consistency mining for some negative pairs.

1) Consistency Refining: Consistency refining aims to re-
calibrate the correspondence of false positive pairs so that their
consistency could be properly embedded. For the clean split
Dc, the original correspondence is likely to be correct, and
thus we slightly reduce the correspondence intensity with the
clean confidence pi. To prevent error accumulation, we swap
the probability score between networks A and B, leading to
the following formulation, i.e.,

y′Aci = pBi yi + (1− pBi )ŷAi ,

y′Bci = pAi yi + (1− pAi )ŷBi ,
(5)

where ŷA and ŷB denote the current predictions from networks
A and B respectively, which are computed by the bi-directional
retrieval results as follows (similar for ŷB),

ŷAi =
1

2

[
ŷAi2t + ŷAt2i

]
=

1

2

[
exp (sAi,i/τ)∑N
j=1 exp (sAi,j/τ)

+
exp (sAi,i/τ)∑N
j=1 exp (sAj,i/τ)

]
.

(6)

For the vague split Dv , the original annotated correspon-
dence is not as reliable as those in the clean split. Accordingly,

we lower the intensity of the original correspondence by
averaging of clean confidences from two DNNs, and the
rectified correspondence is defined as

y′A(B)
vi =

pAi + pBi
2

yi +

(
1− pAi + pBi

2

)
ŷ
A(B)
i . (7)

For the noisy split DN , since the annotated correspondence
is no longer reliable, we average the current prediction from
two DNNs as the rectified correspondence, namely,

y′A(B)
ni

=
ŷAi + ŷBi

2
. (8)

2) Consistency Mining: Besides refining consistency of
positive pairs, we mine the potential consistency rooted in neg-
ative pairs and establish correspondence for them accordingly.
Specifically, the consistency mining is performed within each
branch of networks A and B independently. For conciseness,
we omit the mark A(B) in the following. The intensity of
correspondence established on negative pairs is determined by
the rectified value of the anchor and pair-wise similarities in
the feature space. Specifically,

wi2ti,j = (1− y′i)
si,j∑N

k=1,k 6=i si,k
,

wt2ii,j = (1− y′j)
si,j∑N

k=1,k 6=j sk,j
,

(9)

where y′i(j) is the refined correspondence, wi2ti,j and wt2ii,j denote
the consistency between cross-modal sample i and j in image-
to-text and text-to-image retrieval, respectively.

Next, instead of building correspondence between all neg-
ative pairs, we sieve out those pairs with relatively low
consistency. Such a filtering operation encourages the network
to focus on reliable consistency, which is more likely to benefit
the CMR model optimization as verified in our experiments.
The threshold for filtering is designed in a data-driven manner,
namely,

β =
1

N
(ȳ′cNc + ȳ′vNv + ȳ′nNn) , (10)

where Nc, Nv , and Nn denote the number of pairs in the clean,
vague, and noisy split (s.t. Nc+Nv +Nn = N ), respectively.
In practice, we filter those negative pairs with similarity lower
than the threshold β, namely,

ŵi2ti,j =

{
0, if wi2ti,j < β,

wi2ti,j , else,
(11)

and ŵt2ii,j is filtered similarly, namely, the finally established
correspondence for negative pairs. Such a design could adap-
tively adapt to different ratios of noisy correspondence. Con-
cretely, when the noise ratio is low, most of the cross-
modal sample pairs would be regarded as clean, and thus
the computation of Eq. 10 would be dominated by pairs in
the clean split. Accordingly, the filtering threshold would be
high, which could tighten the correspondence establishment.
On the contrary, under a high noise rate, the filtering threshold
would be reduced by noisy pairs. As a result, a low threshold
would allow the model to mine more potential consistency in
the negative bank to complement the lost consistency caused
by noisy pairs. For a comprehensive understanding of our
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adaptive filtering threshold, we present some analytical studies
on the experiments.

C. Robust Cross-modal Retrieval

Given the recast consistency, i.e., rectified correspondence
for positive pairs and newly established correspondence for
negative pairs, we propose the following objective function
for robust cross-modal retrieval, i.e.,

L = Lp +
1

2

[
Li2tn + Lt2in

]
=

1

N

N∑
i=1

y′ili +
1

2N

 N∑
i=1
i 6=j

−ŵi2ti,j log
exp (si,j/τ)∑N
k=1 exp (si,k/τ)

+

N∑
j=1
j 6=i

−ŵt2ii,j log
exp (si,j/τ)∑N
k=1 exp (sk,j/τ)

 ,
(12)

where Lp, Li2tn , and Lt2in denote the loss for refined positive
pairs and bi-directional negative pairs in cross-modal retrieval,
respectively. With the above loss design, the model could
alleviate the influence of false positive pairs and exploit the
potential consistency rooted in some negative pairs, leading to
robust cross-modal retrieval against noisy correspondence.

IV. EXPERIMENTS

In this section, we verify the robustness of CREAM against
the instance-level image-text NC and the more fine-grained
patch-level NC. To this end, we conduct extensive experiments
on both the image-text retrieval and graph matching tasks
across six benchmarks. The organization of this section is
as follows. In Section IV-A, we elaborate on the experiment
settings including datasets and implementation details. In
Section IV-B, we carry out extensive experiments on three
benchmarks to evaluate the effectiveness of CREAM. In Sec-
tion IV-C, we conduct detailed ablation studies to investigate
the effects of each module. In Section IV-D, we perform a
series of analytical experiments to give a comprehensive un-
derstanding of CREAM. In Section IV-E, we extend CREAM
to the graph matching task and verify its effectiveness on
handling the fine-grained patch-level NC. Due to the space
limitation, we present more results in the Appedix.

A. Experiment Settings

In this section, we elaborate on the experiment settings
including the used datasets and implementation details.

1) Datasets: The detailed descriptions of the used datasets
are presented as follows.
• Conceptual Captions 3M [1]: This is a large-scale

web-harvested dataset consisting of approximately 3.3M
image-caption pairs [1]. In the experiment, follow-
ing [15], we use a randomly-selected subset of Con-
ceptual Captions 3M for evaluation, named CC152K.
CC152K contains 150K pairs for training, 1K pairs for
validation, and 1K pairs for testing.

• Flickr30K [56]: The dataset contains 31K images col-
lected from the Flickr website. Each image has 5 man-
ually annotated captions. As a result, there are 155K
image-text pairs in the datasets. Following [2], we use
5K pairs for validation, 5K pairs for testing, and 145K
pairs for training.

• MS-COCO [57]: The dataset consists of 123,287 images,
and each image is annotated with 5 text descriptions.
Therefore, there are 616,435 image-text pairs in the
dataset, which is split into 566,435 pairs for training,
25K pairs for validation (as it is slow to validate on 25K
pairs, only 5K pairs are used in all experiments), and the
rest 25K for testing. Following [2], we use two kinds
of evaluation protocols, namely, 5 fold of 1K test images
and full 5K test images. The results are reported by either
averaging over 5 folds of 1K test images (denoted by MS-
COCO 1K) or testing on the full 5K test images (denoted
by MS-COCO 5K).

• SPair-71k [58]: The dataset comprises 70,958 image
pairs covering a total of 18 classes. These image pairs
exhibit diverse variations in viewpoint thus suffering from
noisy correspondence between keypoints.

• Pascal VOC [59]: The dataset comprises 7,020 images
allocated for training and 1,682 for testing, covering a
total of 20 classes. Each image contains a varying number
of keypoints, ranging between 6 and 23.

• Willow Object [60]: The dataset includes 256 images
across 5 categories, each annotated with 10 distinctive
landmarks. Follow [40], we train our CREAM on the
initial 20 images and test on the remaining set.

Our primary focus lies in validating CREAM’s effectiveness
within the image-text retrieval task, leaving the exploration of
its extension to the graph matching task in the last. For exten-
sive evaluations, we conduct experiments on both simulated
and real-world NC-contaminated datasets. Specifically, for the
well-annotated Flickr30K [56] and MS-COCO [57] datasets,
following NCR [15], we simulate the NC by randomly shuf-
fling the text of training images in a specific percentage, which
is denoted as noise ratio. As for CC152K [15], it is reported to
have 3% – 20% mismatched pairs (i.e., NC off-the-shelf) since
the data pairs are harvested from the Web [1]. Following [16],
we use the widely-used CMR metrics, i.e., Recall@1 (R@1),
Recall@5 (R@5), Recall@10 (R@10), and their sum (denoted
as R-sum) for the performance measurement.

2) Implementation details: The proposed CREAM is a
generalized NC-robust framework that could be adapted to
most existing CMR models. In the main experiments, we
endow the recently-proposed CMR baseline, SGR [8], with
robustness against NC. In brief, we maintain the backbone of
SGR and train it using the proposed framework. Specifically,
following [2], [8], the off-the-shelf Faster-RCNN [61] is used
to extract the features of each image and obtain 36 feature
vectors of regions of interest (ROI) for backbone training, and
each vector is with 2048 dimensions. Each caption is first
processed by word embedding with the size of 300, then fed
into Bi-GRU [62] whose hidden state number is 1024.

In our implementation, we first randomly initialize two SGR
models and warm up the models using Eq. 1 for better network
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initialization. Notably, the existing NC-oriented methods [15],
[16] also adopt the warm-up strategy while the warm-up epoch
varies from different datasets or noise ratios. In this work, the
warm-up stage would continue as long as all the metric values
on the validation set are increasing, and the maximum warm-
up epoch is set as 5. Clearly, our strategy could avoid the labor-
intensive tuning on the warm-up epochs. After the warm-up
stage, the ROIs features of images and features of captions are
fed into both two models for training. The models are trained
under the proposed framework, i.e., CREAM with a batch size
of 128, and both models share the same data within a single
batch. For better data partition, we first use the divided clean
data only, and then gradually add the divided vague and noisy
data as the training proceeds. For network parameter updating,
we use the Adam optimizer [63] with default parameters.

To ensure the practicability of our CREAM, we use the
final checkpoints for evaluation instead of using the best
checkpoints in the validation set. In the inference stage, we
average the predictions of model A and model B as the final
prediction for evaluation. All the experiments and evaluations
are performed on Ubuntu OS with GeForce RTX 3090 GPUs.

TABLE I
EXPERIMENT RESULTS ON CC152K. THE BEST AND SECOND BEST

RESULTS ARE HIGHLIGHTED IN BOLD AND UNDERLINE, RESPECTIVELY.

Method
CC152K

Image to text Text to image R-SumR@1 R@5 R@10 R@1 R@5 R@10

SCAN (ECCV’18) 30.5 55.3 65.3 26.9 53.0 64.7 295.7
IMRAM (CVPR’20) 33.1 57.6 68.1 29.0 56.8 67.4 312.0
SAF (AAAI’21) 31.7 59.3 68.2 31.9 59.0 67.9 318.0
SGR (AAAI’21) 35.0 63.4 73.3 34.9 63.0 72.8 342.4
NCR (NeurIPS’21) 39.5 64.5 73.5 40.3 64.6 73.2 355.6
DECL (ACMMM’22) 36.2 63.6 73.2 37.1 63.6 73.7 347.4
Ours 40.3 68.5 77.1 40.2 68.2 78.3 372.6

TABLE II
EXPERIMENT RESULTS ON FLICKR30K.

Noise Method
Flickr30K

Image to text Text to image R-SumR@1 R@5 R@10 R@1 R@5 R@10

20%

SCAN (ECCV’18) 56.4 81.7 89.3 34.2 65.1 75.6 402.3
IMRAM (CVPR’20) 36.0 67.8 78.8 23.1 51.7 63.7 321.1
SAF (AAAI’21) 51.8 79.5 88.3 38.1 66.8 76.6 401.1
SGR (AAAI’21) 61.2 84.3 91.5 44.5 72.1 80.2 433.8
NCR (NeurIPS’21) 76.7 93.9 96.9 57.5 82.8 89.2 497.0
DECL (ACMMM’22) 75.1 93.6 96.7 56.2 82.4 88.5 492.5
Ours 77.4 95.0 97.3 58.7 84.1 89.8 502.3

40%

SCAN (ECCV’18) 29.9 60.5 72.5 16.4 38.5 48.6 266.4
IMRAM (CVPR’20) 23.5 53.9 65.8 16.9 41.0 53.2 254.2
SAF (AAAI’21) 34.3 65.6 78.4 30.1 58.0 68.5 335.0
SGR (AAAI’21) 47.2 76.4 83.2 34.5 60.3 70.5 372.1
NCR (NeurIPS’21) 75.3 92.1 95.2 56.2 80.6 87.4 486.8
DECL (ACMMM’22) 72.2 91.9 96.0 53.8 80.1 87.0 481.0
Ours 76.3 93.4 97.1 57.0 82.6 88.7 495.1

60%

SCAN (ECCV’18) 16.9 39.3 53.9 2.8 7.4 11.4 131.7
IMRAM (CVPR’20) 14.9 38.1 52.9 11.5 31.4 44.3 193.1
SAF (AAAI’21) 28.3 54.5 67.5 22.1 47.3 59.0 278.7
SGR (AAAI’21) 28.7 58.0 71.0 23.8 49.5 60.7 291.7
NCR (NeurIPS’21) 68.7 89.9 95.5 52.0 77.6 84.9 468.6
DECL (ACMMM’22) 69.1 90.3 94.9 50.4 76.7 84.6 466.0
Ours 70.6 91.2 96.1 53.3 79.2 87.0 477.4

80%

SCAN (ECCV’18) 5.1 18.1 27.3 3.9 13.1 19.1 86.6
IMRAM (CVPR’20) 8.5 26.7 38.8 7.1 20.7 30.8 132.5
SAF (AAAI’21) 12.2 32.8 48.4 11.8 30.5 41.5 177.2
SGR (AAAI’21) 13.7 35.1 47.6 12.1 30.9 41.9 181.3
NCR (NeurIPS’21) 1.4 7.1 11.7 1.5 5.4 9.3 36.4
DECL (ACMMM’22) 55.4 80.4 88.0 37.6 64.9 74.8 401.1
Ours 56.1 81.2 88.4 39.2 66.7 76.2 407.8

TABLE III
EXPERIMENT RESULTS ON MS-COCO 1K.

Noise Method
MS-COCO 1K

Image to text Text to image R-SumR@1 R@5 R@10 R@1 R@5 R@10

20%

SCAN (ECCV’18) 28.9 64.5 79.5 20.6 55.6 73.5 322.6
IMRAM (CVPR’20) 39.1 76.9 88.9 33.1 66.9 79.8 384.7
SAF (AAAI’21) 41.0 78.4 89.4 38.2 74.0 85.5 406.5
SGR (AAAI’21) 49.1 83.8 92.7 42.5 77.7 88.2 434.0
NCR (NeurIPS’21) 77.0 95.6 98.1 61.5 89.3 95.1 516.6
DECL (ACMMM’22) 77.1 95.9 98.4 61.6 89.1 95.2 517.3
Ours 78.9 96.3 98.6 63.3 90.1 95.8 523.0

40%

SCAN (ECCV’18) 30.1 65.2 79.2 18.9 51.1 69.9 314.4
IMRAM (CVPR’20) 32.4 68.5 82.2 30.2 64.9 79.9 358.1
SAF (AAAI’21) 36.0 74.4 87.0 33.7 69.4 82.5 383.0
SGR (AAAI’21) 43.9 78.3 89.3 37.0 72.8 85.1 406.4
NCR (NeurIPS’21) 76.5 95.0 98.2 60.7 88.5 95.0 513.9
DECL (ACMMM’22) 75.6 95.0 98.2 59.8 88.2 94.7 511.4
Ours 76.5 95.6 98.3 61.7 89.4 95.3 516.8

60%

SCAN (ECCV’18) 27.8 59.8 74.8 16.8 47.8 66.4 293.4
IMRAM (CVPR’20) 28.1 62.7 78.5 26.6 59.8 75.1 330.8
SAF (AAAI’21) 28.2 63.9 79.4 31.1 65.6 80.5 348.7
SGR (AAAI’21) 37.6 73.3 86.3 33.8 68.6 81.7 381.3
NCR (NeurIPS’21) 72.7 94.0 97.6 57.9 87.0 94.1 503.3
DECL (ACMMM’22) 63.4 90.0 95.7 49.6 81.8 91.0 471.4
Ours 74.7 94.8 98.0 59.7 88.0 94.6 509.9

80%

SCAN (ECCV’18) 22.2 51.9 67.5 13.8 41.1 58.6 255.1
IMRAM (CVPR’20) 21.5 53.0 68.9 20.4 51.0 67.4 282.2
SAF (AAAI’21) 24.2 57.5 74.1 24.7 57.1 73.0 310.6
SGR (AAAI’21) 26.7 60.7 75.6 25.3 58.2 72.6 319.1
NCR (NeurIPS’21) 21.6 52.6 67.6 15.1 38.1 49.8 244.8
DECL (ACMMM’22) 65.7 91.2 96.1 51.8 82.7 91.1 478.5
Ours 68.6 92.0 96.4 54.3 84.8 92.5 488.7

B. Comparisons with State of the Arts

To verify the effectiveness of CREAM, we compare
CREAM with six image-text retrieval baselines including
SCAN [2], IMRAM [25], SAF [8], SGR [8], NCR [15],
and DECL [16]. Among them, the former four baselines are
the standard CMR baselines, while NCR and DECL are the
existing NC-robust CMR methods. For comprehensive com-
parisons, besides the results on the CC152K dataset, we vary
the noise ratio of Flickr30K and MS-COCO datasets from 20%
to 80% with an interval of 20% to simulate more NC scenarios
and report the results. The results on the CC152K, Flickr30K,
MS-COCO 1K are summarized in Tables I, II and III, respec-
tively. According to the results, one could have the following
observations and conclusions. First, with the increasing noise
ratio, our CREAM performs relatively stable, whereas the
standard CMR baselines encounter remarkable performance
degradation, verifying the necessity of developing the NC-
robust CMR method. Second, compared to existing NC-robust
methods (DECL [16], NCR [15]), our CREAM still achieves
promising performance improvement. For example, on the
real-world NC-contaminated dataset (CC152K), CREAM im-
proves the “R-Sum” by 4.8% and 7.3% compared to NCR and
DECL, respectively. On the simulated NC-contaminated MS-
COCO 1K dataset, CREAM achieves absolute improvements
of +5.7,+2.9,+6.6,+10.2 on “R-Sum” when the noise ratio
varies in the range of [20%, 40%, 60%, 80%], comparing to
the best baseline.

C. Ablation Studies

In this section, we first perform a standard ablation study
to investigate the importance of each component. Then, we
conduct comprehensive fine-grained ablation studies to inves-
tigate the effects of the CDP and CRM modules. All the
ablation studies are conducted on the Flickr30K dataset with
40% noise.
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1) Ablation on Each Module of CREAM: We conduct
experiments on the following variants of CREAM by isolating
the corresponding module: i) we remove the CDP module, i.e.,
all the data pairs are regarded as clean ones; ii) we remove
the CRM module, i.e., the correspondence of clean and vague
pairs are set to be 1 while those of noisy pairs are set to be 0;
iii) we replace our loss (Eq. 12) with the loss of NCR [15]; iv)
we remove the warm-up procedure; v) we train models with
the vanilla contrastive loss (Eq. 1) only while removing the
three modules. Table IV summarizes the results and indicates
the inseparability of each component.

TABLE IV
ABLATION STUDIES FOR CREAM ON FLICKR30K WITH 40% NOISE. THE

DEFAULT SETTINGS ARE MARKED IN GRAY .

Method Variants Image to text Text to image R-SumCDP CRM RCR WarmUp R@1 R@10 R@1 R@10

X X X X 76.3 97.1 57.0 88.7 495.1
X X X 75.7 96.4 56.4 88.2 490.4

X X X 73.7 96.2 56.5 88.5 490.0
X X X 75.0 96.8 55.5 87.5 488.7
X X X 73.6 96.2 55.5 88.1 487.9

X 68.2 94.4 50.1 77.8 453.8

2) The Effect of the CDP Module: To investigate the effect
of the CDP module, we perform the following CDP variants: i)
Using the divided clean subsets for training only; ii) Merging
the clean and vague subsets; iii) Merging the noisy and vague
subsets; iv) Employing a single neural network for partition
only, i.e., self-training. The results are summarized in Table V,
where one could see that our dedicated partition strategy is
more favorable for achieving NC-robust CMR.

TABLE V
FINE-GRAINED ABLATION STUDIES ON THE CDP MODULE.

CDP Variants Image to text Text to image R-SumR@1 R@10 R@1 R@10

Clean+Vague+Noisy 76.3 97.1 57.0 88.7 495.1
Clean Only 74.6 96.8 56.1 88.5 491.1
Clean (with Vague) + Noisy 75.0 96.5 56.4 88.6 491.0
Clean + Noisy (with Vague) 74.8 97.2 56.9 88.9 493.9
Clean+Vague+Noisy (SelfTraining) 70.1 94.8 51.2 82.9 466.7

3) The Effect of the CRM Module: We first investigate
the effect of the consistency mining scheme (Section III-B2)
by conducting the following variants: i) we replace the con-
sistency mining scheme with the vanilla label smooth (LS)
strategy; ii) we remove the consistency mining scheme; iii)
we perform CRM without the filter operation (denoted as w/o
Eq. 11). Moreover, we investigate the effect of the consis-
tency refining scheme (Section III-B1) by adopting different
rectification strategies. From Table VI, one could realize the
importance of our CRM module. On the one hand, the perfor-
mance could be significantly boosted, once the correspondence
of pairs with potential consistency is properly established in
the negative bank. On the other hand, it is necessary to design
the dedicated consistency refining scheme according to the
characteristic of each subset.

D. Analytical Experiments

In this section, we first show the robustness and general-
izability of CREAM. After that, we visually investigate the

TABLE VI
FINE-GRAINED ABLATION STUDIES ON THE CRM MODULE.

CRM Variants Image to text Text to image R-Sum
y′c y′v y′n ŵ R@1 R@10 R@1 R@10

Eq. 5 Eq. 6 Eq. 7 Eq. 11 76.3 97.1 57.0 88.7 495.1
Eq. 5 Eq. 6 Eq. 7 LS 75.7 96.8 57.6 88.4 492.9
Eq. 5 Eq. 6 Eq. 7 0 75.9 96.4 56.2 88.3 492.6
Eq. 5 Eq. 6 Eq. 7 w/o Eq. 11 73.7 96.8 56.0 88.2 489.1

1 1 1 Eq. 11 75.4 96.9 56.1 88.5 492.4
1 1 0 Eq. 11 73.7 96.2 56.5 88.5 490.0
1 0 0 Eq. 11 74.0 96.5 55.7 88.6 490.3

effectiveness of our CDP and CRM modules. Finally, we
present some false positive pairs in the dataset and pairs with
diverse potential consistency in the negative bank detected by
CREAM.

1) Robustness and Generalizability: To inverstigate the
robustness of CREAM, we conduct CREAM and its baseline
SGR [8] by varying the noise ratio from 10% to 80% with an
interval of 10%. Furthermore, to show the generalizability of
CREAM, we adapt it to another CMR baseline SCAN [2] to
evaluate the robustness against NC. Fig. 3 depicts that both
SGR and SCAN encounter a severe performance drop as the
noise ratio increases. In contrast, CREAM could endow the
two baselines with robustness against NC, demonstrating the
robustness and generalizability of the proposed CREAM.

Fig. 3. Retrieval performance of CREAM on the Flickr30K dataset when
adapted to SGR and SCAN with varying noise ratio.

2) Effectiveness of the CDP and CRM modules: To inves-
tigate how our CRM module helps to achieve robust cross-
modal retrieval, we visualize the per-sample loss distribution.
The results are shown in Fig. 4(a)-(c) One could observe that
after warmup, the losses for clean, vague, and noisy samples
show different patterns, which proves the effectiveness of
our CDP module. After training, the model successfully fits
clean and vague samples to different extents, while not being
influenced by those noisy samples. Such a result indicates that
CRM achieves robustness against NC.

Noticed that in consistency mining, we design an adaptive
filter to automatically handle different noisy ratios. To illus-
trate how the filter works, we visualize the weight distribu-
tion for samples in the negative bank and the corresponding
filtering thresholds in Fig. 4(d). As shown, the weights are
generally larger under a lower noise ratio, since the model
learns better cross-view consistency from more true positive
pairs. Accordingly, CREAM computes a stricter threshold
following Eq.10. The results indicate that CREAM could
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Fig. 4. (a)-(c): The per-sample loss distribution on the Flickr30K dataset with
40% noise ratio across the training process. (d) The weight distribution and
the computed thresholds on the Flickr30K dataset under different noise ratios.

always mine the most reliable consistency in the negative bank
under different noise ratios.

3) Compatibility of CREAM across Various Feature Ex-
tractors: To investigate the compatibility of CREAM with
different extractors, in this section, we use the state-of-the-
art vision transformer model, EVA [64]–[66], as the visual
feature extractor. Specifically, we replace the default Faster-
RCNN extractor of SGR with the EVA model, and perform
experiments using SGR, NCR and CREAM. From Table VII,
one could observe that our CREAM still achieve superior
performance than NCR and SGR, implying the compatibility
of cream across different feature extractors. Note that, using
the EVA model would slightly decrease the performance
compared to the Faster-RCNN counterpart although EVA is
the SOTA backbone for image classification. The reason could
be attributed to the prior information acquired by the Faster-
RCNN. More specifically, Faster-RCNN could extract the fine-
grained object information which would benefit the cross-
modal semantic similarity measurement. In contrast, EVA
could only extract the coarse-grained semantic information.

TABLE VII
PERFORMANCE ON THE FLICKR30K DATASET EMPLOYING THE

STATE-OF-THE-ART VISION TRANSFORMER BACKBONE.

Flickr30K Method Image to text Text to image R-SumNoise R@1 R@10 R@1 R@10

20%
EVA02+SGR 53.5 91.7 43.6 80.5 425.7
EVA02+NCR 71.7 96.3 57.8 89.4 489.4
EVA02+Ours 75.2 96.9 59.9 89.1 499.0

40%
EVA02+SGR 39.8 81.2 31.1 69.3 353.6
EVA02+NCR 68.8 95.5 55.1 87.7 479.6
EVA02+Ours 70.8 96.1 56.5 87.5 484.4

60%
EVA02+SGR 28.4 68.0 19.6 54.7 271.2
EVA02+NCR 61.6 93.5 49.1 84.3 452.7
EVA02+Ours 65.1 94.9 50.6 83.7 459.5

80%
EVA02+SGR 11.6 46.5 9.9 39.5 167.3
EVA02+NCR 7.0 32.1 1.1 6.7 73.0
EVA02+Ours 47.4 86.1 35.7 73.8 383.1

4) Case Study: To give a more intuitive understanding
of the necessity of consistency refining and mining, we
provide some cases from CC152K [15] in Fig. 5. On the

one hand, some image-text pairs are wrongly matched (i.e.,
FPs). CREAM correctly detects those pairs and refines their
consistency to prevent them from misleading the optimization.
On the other hand, despite the annotated pair, we find that
there exists diverse potential consistency in the negative bank
(e.g., partial consistency in text 2–4, and implicit consistency
in text 5). Mining that hidden consistency could further boost
CREAM’s performance in cross-modal retrieval.

Fig. 5. Case study. (a) Consistency refined for FPs. (b) Consistency mined
from the negative bank. Values denote the consistency predicted by our model.

E. Extension to the Graph Matching Task

Graph matching aims to establish the fine-grained corre-
spondence between the keypoints of given semantic-relevant
images/graphs. As pointed by COMMON [40], it is inevitable
to wrongly annotate the key point, resulting in noisy corre-
spondence between keypoints. In this section, we investigate
the effectiveness of our CREAM in handling such fine-grained
noisy correspondence challenge. To this end, we choose
the SOTA graph matching method, i.e., COMMON, as our
baseline model. More specifically, we keep the backbone of
COMMON and train it using our framework. Table VIII sum-
marize the main comparison results between nice SOTA graph
matching baselines with our CREAM. More comprehensive
results could be accessed in the Appendix. As the results
suggested, CREAM performs competitively or even achieves
promising performance improvement compared to the existing
graph matching baselines, although CREAM is not dedicatedly
designed for this task. The performance superiority showcase
the generality of CREAM from the instance-level image-text
NC to the patch-level keypoint NC.

TABLE VIII
KEYPOINT MATCHING AVERAGE ACCURACY FOR ALL CLASSES (%).

Method Willow Pascal VOC SPair-71k

GMN [67] 79.3 62.4 65.3
NGM [68] 85.3 64.1 68.9
PCA [69] 87.4 64.8 66.0
CIE [70] 89.0 68.9 73.3
IPCA [71] 90.1 67.7 71.2
ASAR [72] 94.2 81.1 83.1
BBGM [73] 97.2 79.0 82.1
NGM-v2 [68] 97.5 80.1 80.2
COMMON [40] 99.1 82.7 84.5

Ours 98.8 81.4 85.1



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

V. CONCLUSION

In this paper, we study a practical but less-touched problem
in cross-modal retrieval and graph matching tasks, i.e., noisy
correspondence. To learning with noisy correspondence, we
propose CREAM that achieves robustness through the con-
sistency rectifying and mining paradigm. Extensive experi-
ments on both the image-text retrieval and graph matching
tasks across multiple benchmarks verify the effectiveness of
CREAM in handling both the instance-level NC and fine-
grained patch-level NC. In the future, we plan to extend our
observation and method to other multi-modal applications such
as video analysis, image captioning, and so on.
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APPENDIX

In the appendix, we present more experiments results to
provide comprehensive evaluations of our method. The results
includes the experiments on the setting of MS-COCO 5K,
more analytical experiments, more ablation experiments, more
case studies, and the comprehensive comparison results of the
graph matching task.

A. Experiment Results on MS-COCO 5K

We have compared CREAM with the state-of-the-art meth-
ods on Flickr30K, CC152K and MS-COCO 1K in our
manuscript (Section IV-B). Here, we show the experiment
results on MS-COCO 5K with noise ratio varying in the range
of [20%, 40%, 60%, 80%]. From Table IX, one could see that
CREAM has improved R-Sum under different noise ratios.

TABLE IX
EXPERIMENT RESULTS ON MS-COCO 5K.

Noise Method
MS-COCO 5K

Image to text Text to image R-SumR@1 R@5 R@10 R@1 R@5 R@10

20%

SCAN (ECCV’18) 11.6 32.2 44.8 7.3 23.5 35.9 155.4
IMRAM (CVPR’20) 17.0 44.4 59.4 15.6 38.0 50.8 225.1
SAF (AAAI’21) 17.7 46.1 61.7 18.7 43.9 58.1 246.2
SGR (AAAI’21) 23.6 54.6 69.4 22.0 48.8 62.3 280.8
NCR (NeurIPS’21) 55.0 82.2 90.7 39.6 68.8 79.8 416.1
DECL (ACMMM’22) 57.3 83.3 90.7 40.0 69.1 79.8 420.1
Ours 57.6 84.1 91.6 41.4 71.1 81.2 427.0

40%

SCAN (ECCV’18) 12.5 33.1 46.0 6.7 21.1 32.5 151.9
IMRAM (CVPR’20) 13.5 34.9 49.5 13.6 34.6 47.4 193.5
SAF (AAAI’21) 13.9 40.4 56.4 15.7 39.0 52.4 217.8
SGR (AAAI’21) 21.1 48.7 63.0 17.8 42.5 56.0 249.0
NCR (NeurIPS’21) 55.5 82.2 89.8 39.5 68.3 79.1 414.4
DECL (ACMMM’22) 53.4 81.4 89.4 38.6 67.2 78.3 408.3
Ours 55.3 82.3 90.6 39.8 69.3 80.1 417.3

60%

SCAN (ECCV’18) 10.8 30.0 42.4 5.6 18.7 29.5 136.9
IMRAM (CVPR’20) 10.7 30.8 44.2 11.6 30.4 42.6 170.3
SAF (AAAI’21) 10.1 29.7 44.6 13.8 35.3 48.2 181.8
SGR (AAAI’21) 16.5 40.4 55.5 15.6 38.9 52.2 219.0
NCR (NeurIPS’21) 49.9 78.5 87.9 36.1 65.4 76.5 394.3
DECL (ACMMM’22) 39.1 69.1 80.5 28.4 56.4 68.6 342.0
Ours 52.1 80.4 89.0 37.8 66.9 78.0 404.3

80%

SCAN (ECCV’18) 7.3 23.1 34.1 4.5 15.3 24.4 108.7
IMRAM (CVPR’20) 7.1 22.8 34.6 8.2 22.9 33.9 129.6
SAF (AAAI’21) 8.8 25.5 38.7 10.2 28.3 39.8 151.3
SGR (AAAI’21) 9.8 28.5 42.8 10.7 29.5 41.5 162.8
NCR (NeurIPS’21) 7.4 23.7 34.8 6.0 17.4 25.5 114.8
DECL (ACMMM’22) 42.5 72.6 82.9 30.5 58.7 70.7 357.8
Ours 46.5 74.9 84.3 32.5 61.5 73.2 372.8

B. More Analytical Experiments

To verify the effectiveness of the CDP and CRM modules,
we have conducted experiments on the Flickr30K dataset in the
manuscript (Section IV-D2). Here, we give more experiment
results on MS-COCO under the same experiment settings. The
results are visualized in Fig. 6.

From Fig. 6(a)-(c), one could see that after networks ini-
tialized, the clean, vague and noisy samples are mixed up.
Then, after warmup, the CDP module could divide samples
into three components to some degree according to those two
neural networks. After training, noisy samples are far away
from clean and vague samples and most of clean samples are
well learned. Those two networks are not influenced by noisy
samples, which shows the effectiveness of CRM module.

Noticed that we have designed an adaptive filter β to
help the network select more reliable consistency, which
would benefit the optimization of CMR module. As shown

in Fig. 6(d), we visualize the distribution of weights and
the corresponding filtering thresholds on MS-COCO. The
behavior of our method on MS-COCO is consistent with that
on Flickr30K. The results indicate that CREAM could always
using the most reliable consistency for optimization.
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Fig. 6. (a)-(c): The per-sample loss distribution on MS-COCO dataset with
40% noise ratio across the training process. (d) The weight distribution and
the computed thresholds on MS-COCO under different noise ratios.

C. More Ablations

To further investigate the effect of our collaborative data
partition module, we perform more fine-grained ablation stud-
ies by adopting only one neural network to divide the dataset.
From the Table X, one could observe that employing a single
network with GMM modeling of three components would de-
crease the performance compared to our default data partition
module. It could be attributed to the error accumulation by
such self-training manner.

TABLE X
FINE-GRAINED ABLATION STUDIES ON THE FLICKR30K DATASET USING

SINGLE GMM FOR DATA PARTITION.

Flickr30K Method Image to text Text to image R-SumNoise R@1 R@10 R@1 R@10

20% Ours* 75.8 96.3 55.8 87.5 489.1
Ours 77.4 97.3 58.7 89.8 502.3

40% Ours* 70.1 94.8 51.2 82.9 466.7
Ours 76.3 97.1 57.0 88.7 495.1

60% Ours* 62.8 91.0 43.9 75.7 427.9
Ours 70.6 96.1 53.3 87.0 477.4

80% Ours* 52.6 85.6 35.5 68.8 381.3
Ours 56.1 88.4 39.2 76.2 407.8

D. More Case Studies

In the manuscript, we have given some case studies for a
comprehensive understanding of our method (Section IV-D4).
Here, we give more case studies about the consistency mined
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in the negative bank by our method. The results are presented
in Fig. 7 and Fig. 8, where the former uses images as queries
while the latter uses captions as queries. From the results,
one could see the powerful ability of mining consistency of
our method, which would boost the performance of cross-
modal retrieval. Note that, as shown in Fig. 8 (d), our method
explores some diverse potential consistency while refining the
incorrect correspondence for the ground truth, which could
benefit achieving robust cross-modal retrieval.

(a)

(b)

(c)

(d)

Fig. 7. Case studies on mined consistency using images as queries. The
first caption of each query is the ground truth, and the value denotes the
consistency predicted by our model.

(a)

(b)

(c)

(d)

Fig. 8. Case studies on mined consistency using captions as queries. The
ground truth image of each query is framed in green, and the value denotes
the consistency predicted by our model.

TABLE XI
KEYPOINT MATCHING ACCURACY (%) ACROSS ALL OBJECTS ON WILLOW

OBJECT.

Method Car Duck Face Mbike Wbottle Mean

GMN [67] 67.9 76.7 99.8 69.2 83.1 79.3
NGM [68] 84.2 77.6 99.4 76.8 88.3 85.3
PCA [69] 87.6 83.6 100 77.6 88.4 87.4
CIE [70] 85.8 82.1 99.9 88.4 88.7 89.0
IPCA [71] 90.4 88.6 100 83.0 88.3 90.1
ASAR [72] 92.5 84.0 100 95.4 99.0 94.2
BBGM [73] 96.8 89.9 100 99.8 99.4 97.2
NGM-v2 [68] 97.4 93.4 100 98.6 98.3 97.5
COMMON [40] 97.6 98.2 100 100 99.6 99.1

Ours 97.7 96.3 100 100 99.8 98.8

E. Comprehensive Results of Graph Matching Experiments

In the manuscript, we summary the average keypoint match-
ing accuracy on Willow Object, Pascal VOC and SPair-71k
(Section IV-E). Here, in Table XI, Table XII and Table XIII, we
show the complete results for all classes in those three datasets,
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TABLE XII
KEYPOINT MATCHING ACCURACY (%) ON PASCAL VOC WITH STANDARD INTERSECTION FILTERING.

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train Tv Mean

GMN [67] 41.6 59.6 60.3 48.0 79.2 70.2 67.4 64.9 39.2 61.3 66.9 59.8 61.1 59.8 37.2 78.2 68.0 49.9 84.2 91.4 62.4
PCA [69] 49.8 61.9 65.3 57.2 78.8 75.6 64.7 69.7 41.6 63.4 50.7 67.1 66.7 61.6 44.5 81.2 67.8 59.2 78.5 90.4 64.8
NGM [68] 50.1 63.5 57.9 53.4 79.8 77.1 73.6 68.2 41.1 66.4 40.8 60.3 61.9 63.5 45.6 77.1 69.3 65.5 79.2 88.2 64.1
IPCA [71] 53.8 66.2 67.1 61.2 80.4 75.3 72.6 72.5 44.6 65.2 54.3 67.2 67.9 64.2 47.9 84.4 70.8 64.0 83.8 90.8 67.7
CIE [70] 52.5 68.6 70.2 57.1 82.1 77.0 70.7 73.1 43.8 69.9 62.4 70.2 70.3 66.4 47.6 85.3 71.7 64.0 83.9 91.7 68.9
BBGM [73] 61.9 71.1 79.7 79.0 87.4 94.0 89.5 80.2 56.8 79.1 64.6 78.9 76.2 75.1 65.2 98.2 77.3 77.0 94.9 93.9 79.0
NGM-v2 [68] 61.8 71.2 77.6 78.8 87.3 93.6 87.7 79.8 55.4 77.8 89.5 78.8 80.1 79.2 62.6 97.7 77.7 75.7 96.7 93.2 80.1
ASAR [72] 62.9 74.3 79.5 80.1 89.2 94.0 88.9 78.9 58.8 79.8 88.2 78.9 79.5 77.9 64.9 98.2 77.5 77.1 98.6 93.7 81.1
COMMON [40] 65.6 75.2 80.8 79.5 89.3 92.3 90.1 81.8 61.6 80.7 95.0 82.0 81.6 79.5 66.6 98.9 78.9 80.9 99.3 93.8 82.7

Ours 67.0 75.6 82.2 78.1 89.4 91.6 89.3 81.6 62.1 82.3 74.3 81.7 80.9 79.0 67.7 99.3 78.9 73.7 98.3 94.7 81.4

TABLE XIII
KEYPOINT MATCHING ACCURACY (%) ON SPAIR-71K FOR ALL CLASSES.

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Dog Horse Mbike Person Plant Sheep Train Tv Mean

GMN [67] 59.9 51.0 74.3 46.7 63.3 75.5 69.5 64.6 57.5 73.0 58.7 59.1 63.2 51.2 86.9 57.9 70.0 92.4 65.3
PCA [69] 64.7 45.7 78.1 51.3 63.8 72.7 61.2 62.8 62.6 68.2 59.1 61.2 64.9 57.7 87.4 60.4 72.5 92.8 66.0
NGM [68] 66.4 52.6 77.0 49.6 67.7 78.8 67.6 68.3 59.2 73.6 63.9 60.7 70.7 60.9 87.5 63.9 79.8 91.5 68.9
IPCA [71] 69.0 52.9 80.4 54.3 66.5 80.0 68.5 71.4 61.4 74.8 66.3 65.1 69.6 63.9 91.1 65.4 82.9 97.5 71.2
CIE [70] 71.5 57.1 81.7 56.7 67.9 82.5 73.4 74.5 62.6 78.0 68.7 66.3 73.7 66.0 92.5 67.2 82.3 97.5 73.3
NGM-v2 [68] 68.8 63.3 86.8 70.1 69.7 94.7 87.4 77.4 72.1 80.7 74.3 72.5 79.5 73.4 98.9 81.2 94.3 98.7 80.2
BBGM [73] 75.3 65.0 87.6 78.0 69.8 94.0 87.8 78.3 72.8 82.7 76.6 76.3 80.1 75.0 98.7 85.2 96.3 98.0 82.1
ASAR [72] 72.4 61.8 91.8 79.1 71.2 97.4 90.4 78.3 74.2 83.1 77.3 77.0 83.1 76.4 99.5 85.2 97.8 99.5 83.1
COMMON [40] 77.3 68.2 92.0 79.5 70.4 97.5 91.6 82.5 72.2 88.0 80.0 74.1 83.4 82.8 99.9 84.4 98.2 99.8 84.5

Ours 78.4 70.3 90.5 78.6 72.1 98.5 91.7 82.0 71.4 87.1 82.4 75.4 83.5 84.4 99.4 86.0 99.5 99.9 85.1

respectively. One could see that CREAM achieves competitive
results among SOTAs, which proves the generalizability of
CREAM to the graph matching with noisy correspondence
problem.
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