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Abstract

Recently, contrastive multi-view clustering (MvC) has emerged as a promising
avenue for analyzing data from heterogeneous sources, typically leveraging the
off-the-shelf instances as positives and randomly sampled ones as negatives. In
practice, however, this paradigm would unavoidably suffer from the Dual Noisy
Correspondence (DNC) problem, where noise compromises the constructions
of both positive and negative pairs. Specifically, the complexity of data collec-
tion and transmission might mistake some unassociated pairs as positive (namely,
false positive correspondence), while the intrinsic one-to-many contrast nature of
contrastive MvC would sample some intra-cluster samples as negative (namely,
false negative correspondence). To handle this daunting problem, we propose
a novel method, dubbed Contextually-spectral based correspondence refinery
(CANDY). CANDY dexterously exploits inter-view similarities as confext to
uncover false negatives. Furthermore, it employs a spectral-based module to
denoise correspondence, alleviating the negative influence of false positives. Ex-
tensive experiments on five widely-used multi-view benchmarks, in compari-
son with eight competitive multi-view clustering methods, verify the effective-
ness of our method in addressing the DNC problem. The code is available at
https://github.com/XLearning-SCU/2024-NeurIPS-CANDY.

1 Introduction

In real-world applications, data are often presented in various modalities or views, including but not
limited to visible images, thermal images, text, and audio [1} 2l]. Multi-view Clustering (MvC), a
fundamental tool in multi-view data analysis, aimed at learning a common space in which data are
grouped into distinct clusters, attracts significant attention across various research communities [349].
In recent years, contrastive MvC methods have emerged as a central focus in multi-view clustering
researches [10,[11]. The typical implementation of these methods involves leveraging the off-the-shelf
data pairs as positives and randomly sampling cross-view pairs as negatives, followed by employing
contrastive learning upon them [12H14]. As a result, the cross-view discrepancy could be eliminated,
revealing the underlying cluster structure.

Although existing contrastive MvC methods have achieved promising performance, their success
heavily relies on the assumption of faultless cross-view correspondence. In practice, however, this
assumption is hard or even impossible to meet [15H19]], leading to inevitable contamination of the
cross-view correspondence, as shown in Fig. [Th. More specifically, the complexity of data collection
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Figure 1: The motivation and key idea. (a) Dual noisy correspondence. The cross-view data pairs
are contaminated by both false positive and negative correspondences, and the clean and noisy
correspondence is mixed. (b) Top: Context-based Semantic Mining. The existing studies estimate
the data affinity based on the data representation and might neglect the out-of-neighborhood yet
semantically-associated false negatives. In contrast, we formulate the affinity from one data point to
all the others as the context and use them for similarity induction, thus benefiting the false negative
uncovering in a global manner; Bottom: Spectral-based Correspondence Denoising. Borrowing from
spectral decomposition for signal denoising, we employ spectral denoising on the contextual affinity
graph to prevent false positives from dominating the model optimization. In the figure, the thickness
of the black arrows represents the association strength between two data points.

and transmission might mistake certain unaligned cross-view pairs for positive pairs, leading to false
positive correspondence. Conversely, the inherent one-to-many contrast characteristic of contrastive
MvC would inevitably result in semantically-associated cross-view positives being wrongly treated
as negatives, thus producing false negative correspondence.

Based on the above observations, this paper reveals a novel problem for contrastive MvC called Dual
Noisy Correspondence (DNC). Formally, DNC refers to the noise present in both cross-view positive
and negative pairs. This problem is akin to the partially view-aligned problem (PVP), yet differs in
that PVP presupposes the availability of some correctly-associated instances for training, while DNC
breaks through this impractical assumption and remains agnostic to any clean correspondence [20,21]].
Thus, DNC could be regarded as a more practical yet challenging variant of PVP, resulting in the
infeasibility of PVP-oriented methods to address the DNC problem. Notably, our experimental
findings, detailed in Section[d] support this claim.

To tackle the DNC problem, we present a novel robust method, dubbed ContextuAlly-spectral
based correspoNDence refinerY (CANDY), for learning to cluster with noisy positive and negative
correspondences. As illustrated in Fig. [Ip, CANDY consists of two core modules: i) the Context-
based Semantic Mining (CSM) module for recalling the false negatives, and ii) the Spectral-based
Correspondence Denoising (SCD) module for alleviating the adverse impact of false positives. To be
specific, CANDY first constructs a cross-view affinity graph from the multi-view data. Subsequently,
CANDY calculates the connection probabilities from each node to all others, forming the context,
and exploits CSM to induce a high-order contextual affinity graph. Thanks to the properties of
high-order affinity, CSM could facilitate the discovery of semantically-associated positives hidden
in the negatives. After that, inspired by singular value decomposition techniques used in image
denoising [22| 23]], CANDY performs spectral decomposition on the contextual affinity graph and
employs SCD to filter noise in the graphical spectrum, thus mitigating overfitting to false positives.
Finally, CANDY employs the denoised contextual affinities to weight arbitrary contrastive losses to
achieve robust MvC against DNC.

In summary, the main contributions and novelties of this work could be summarized as follows.

* We reveal and study a new practical problem in contrastive multi-view clustering, namely,
dual noisy correspondence (DNC). Unlike prior PVP-oriented studies that rely on quite a
few correctly-associated pairs, DNC refers to noise inherent in both cross-view positive and
negative pairs. To the best of our knowledge, this could be one of the first investigations into
noisy correspondence within MvC, particularly the more practical and challenging DNC
problem.



* We propose a novel robust method called CANDY for enhancing the robustness of contrastive
MvC against DNC, embracing the following novelties: i) The formulation of affinity
from one data point to others as context, facilitating the revelation of false negatives; and
ii) Spectral denoising upon the high-order affinity graph, preventing overfitting to false
positives.

» Extensive experiments verify the effectiveness and superiority of CANDY. Moreover, we
demonstrate the generalizability of CANDY, showing that it could serve as a plug-and-play
solution to enhance the robustness of most contrastive MvC methods against DNC.

2 Related Work

In this section, we present a brief review of two topics related to this work: multi-view clustering and
noisy correspondence learning.

2.1 Contrastive Multi-view Clustering

The inherent pairing characteristic of the multi-view data renders the contrastive learning paradigm
a natural fit for MvC, giving rise to the established paradigm of contrastive MvC. Existing MvC
methods could be roughly classified into the following three groups: i) Vanilla contrastive MvC
methods [24], which directly exploit contrastive learning to enhance the discrimination of learned
representations by maximizing the mutual information between distinct views. ii) Robust contrastive
MvC methods against incomplete instances [25H27]], which employ contrastive learning to learn the
cross-view consistency, thereby facilitating the recovery of missing samples. iii) Robust contrastive
MvC methods against false negatives [[18. [28]], which redesign dedicated loss functions or similarity
estimation techniques to conquer false negatives inherent in contrastive learning, thus boosting
clustering performance.

Our CANDY, alongside the works of [18} 28], is devoted to addressing false negatives, while having
the following significant distinctions. Different from [18]], which utilizes a false-negative-robust
loss, CANDY presents a Context-based Semantic Mining (CSM) module to induce a context-aware
and high-order affinity graph, benefiting the discovery of false negatives from a global perspective.
Moreover, [28] proposes modeling the probability of false negatives by resorting to random walks
while being susceptible to cross-view false positives. In contrast, thanks to the SCM module, CANDY
embraces a more robust performance in uncovering false negatives, as verified in our experimental
results.

2.2 Noisy Correspondence Learning

In the era of big data, millions of multimodal data are crawled from the Internet, often requiring
extensive curation, which is time-intensive and cost-prohibitive [[15H17]. Nevertheless, it is almost
impossible to eliminate misalignment in a large quantity of multimodal data, leading to noisy
correspondence. To handle this problem, noisy correspondence learning is presented to alleviate
the negative influence of false positive and negative correspondences within data pairs, which has
achieved promising results across various applications, such as cross-modal retrieval [29-H31]], object
re-identification [32H34]], multi-view learning [21} 35], graph matching [36]], video reasoning [37],
image-text pre-training [38].

To the best of our knowledge, this work could be one of the first studies on learning to cluster with
noisy correspondence. Unlike most existing approaches focusing solely on either false positives or
negatives [30} 21], our CANDY addresses the more general challenge called Dual Noisy Correspon-
dence (DNC). Extensive experiments reveal the impracticality of applying the existing approaches to
DNC in MvC, highlighting the necessity of a tailored solution to MvC against the DNC problem.

3 Method

In this section, we elaborate on the proposed ContextuAlly-spectral based correspoNDence refinerY
(CANDY), which aims to enhance the robustness of contrastive MvC against the Dual Noisy Cor-
respondence (DNC) problem. As illustrated in Fig. [2] our CANDY consists of two novel modules:
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Figure 2: Overview of CANDY. First, each view is fed into a view-specific encoder to generate the
embeddings. These embeddings are adopted to construct both inter- and intra-view affinity graphs,
with edges weighted by Gaussian kernel similarity. The context-based semantic mining module
dexterously reformulates inter-view similarities as “context”, employing this context as a set of bases
to induce a new contextual affinity space. In this space, the rooted/dissimilar false negatives could be
brought to light. Second, the spectral-based correspondence denoising module steps in to alleviate
the adverse impacts of noisy correspondence on positive pairs, thus obtaining a low-noise pseudo
target. Finally, this pseudo target steers the contrastive learning process, enhancing robustness against
DNC in MvC. For the sake of brevity, this figure only presents a simplified depiction involving two
views, and the robust contrastive MvC from view 1 to view 2.

a context-based semantic mining module to uncover inherent false negatives, and a spectral-based
correspondence denoising module to prevent contrastive MvC from overfitting false positives. In the
following, we commence with the mathematical formulation of the DNC problem in Section [3.1}
proceed to the context-based semantic mining module in Section[3.2] and culminate with the spectral-
based correspondence denoising module in Section [3.3]

3.1 Problem Formulation

Given the multi-view dataset D = {(xgl),...,xgv))}f\il with N instances observed
from V views, the objective of contrastive MvC is to group these instances into
K clusters. To this end, contrastive MvC methods construct the sets of posi-

tive and negative pairs as Uf\;l {(x(vl),xgv2), ci> |ei=1,1<wy,v9 < Vv # 112} and
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U%l Ujvzl {(x(.m), x;”2)7 Ci> lci =0,1 <wp,vg < Vv # 1)2} by utilizing the off-the-shelf in-
i#j

K]

stances and perform random sampling across views respectively, where ¢ denotes the established
cross-view correspondence. Subsequently, the contrastive loss [39, 40| is applied to eliminate the
cross-view discrepancy and reveal the cluster structure. However, as elaborated in the Introduction,
cross-view correspondence could often be contaminated by both false positives and negatives. More
specifically, a certain amount of unassociated (¢ = 0) and associated (¢ = 1) pairs would be wrongly
treated as positives (¢ = 1) and negatives (¢ = 0) respectively, while the ground-truth correspondence
¢ is unknown. In particular, the ratio of false negatives would reach up to 1/k when the categories of
the dataset D are uniformly distributed, where k is the number of classes.

To counter the DNC challenge, we introduce a soft contrastive loss:
v
L= Z H (C(Ulavi’)’p (Z(Ul)z(vz)T)) , (D
1)1:1 ’Ug:l
v2£V1
where # denotes the row-wise cross-entropy function with mean reduction, C(V1-¥2) € R™*" jg

the pseudo target (Eq. El), Z(o)zw2) " represents the affinity matrix between views v; and v, and
p (+) signifies the soffmax function. The batch-wise representation matrix Z(*) € R™*? encapsulates
features extracted by the view-specific encoder f(*), with n denoting the batch size. The softmax



function (p (+)) is applied row-wise to ensure each row sums to one as follows:

oo T\ P ([Z(”I)L [Z(”)]J,T/T)
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In general, traditional contrastive MvC methods assume that the cross-view correspondence is
faultless, typically adopting an identity matrix I € R™*"™ as the target. As verified in our experiments,
such a vanilla target not only misleads the model to overfit false positives but also neglects numerous
semantically associated false negatives. Therefore, the goal of CANDY becomes generating a robust
pseudo target resilient against the DNC problem.

3.2 Context-based Semantic Mining

The crux of uncovering false negatives lies in accurately modeling the semantic association between
data points. Therefore, the widely-used strategy is based on the point-to-point similarity in the
affinity graph. Specifically, a fully-connected affinity graph A is first constructed using the feature
Z(1) and Z("2) as nodes in a mini-batch, with edge weights defined by Gaussian kernel similarity.

Mathematically,
2
AE;&—Wz) = exp <— H [Z(Ul)} /O') , 3)

where o is a scale parameter and v; is the anchor view. After that, a cross-view graph Avr—v2)
where each edge represents the probability of semantic association between the corresponding two
nodes, could be obtained by normalizing A in a row-wise manner. This strategy, however, tends to
be short-sighted, potentially neglecting the out-of-neighborhood yet semantically-associated false
negatives, as shown in Fig.[Ib and supported by our experiments.
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In contrast, a simple yet effective semantic modeling strategy is presented to formulate the connection
probability from one node to all others as a context, thereby redefining the context as a special
representation for semantic mining. Intuitively, the context Ag”_wz) = [ qul’l_”’?)? .. ,AEZI_””)}

serves as a new embedding for the node 7, facilitating the construction of a cross-view high-order
affinity graph G("17v2) as follows:

G(v1~>1)2) — A(’Ul*)’UQ)A(’UQ*)’UQ)T (4)

Thanks to context modeling, our CSM embraces two distinct advantages: i) it encapsulates the
structural information of nodes into the graph, enhancing the ability of global semantic mining, and ii)
it provides a novel basis for data representation to project nodes into a new affinity space, potentially
better uncovering semantically-associated false negatives.

3.3 Spectral-based Correspondence Denoising

The false positive correspondence would emerge in both the off-the-shelf positive pairs, as elaborated
in Section and the wrongly associated negatives during the construction of G(V1=v2)_ To address
this, we propose a correspondence-denoising mechanism for the high-order affinity graph G(v1—v2)
based on the spectral denoising theorems [22) 23]]. In brief, it is widely acknowledged that the
eigenvectors of signals corresponding to larger eigenvalues represent principal components, while
smaller ones are apt to be noise. By selectively discarding the information tied to the minor eigen-
values, one could filter out the noise, thereby revealing the underlying structures. Inspired by these
preliminary insights, we propose refining G(“1=v2) by resorting to singular value decomposition.
Mathematically,

Gi=v) —ygev’, 5)
where 3 denotes a diagonal matrix consisting of the singular values, U and V is the left singular
matrix and the right singular matrix, respectively.

After that, the denoised pseudo target could be obtained via
é(v1~>v2) _ UEVT, (6)



where ¥ = diag(A1, -+, Ar) is a diagonal matrix consisting of the retained singular values (A, >
-+« > Ap > 1), with n) being a denoising hyper-parameter fixed as 0.2 in our experiments.

By combining the denoised pseudo target with the vanilla target (I), we obtain the noise-resisted
pseudo target (C(V1:¥2)) for the proposed soft contrastive loss (Eq.|1) via

Cv1v2) = 2T 4 G172, @)

where A is fixed as 0.2 in our experiments.

4 Experiments

In this section, we verify the effectiveness of our CANDY against the DNC problem through extensive
experiments by addressing the following questions:

1. Performance Superiority: Does CANDY outperform the existing state-of-the-art (SOTA)
MvC methods, including those designed for PVP?

2. Component Indispensability: Are all components crucial for maintaining robustness
against DNC?

3. Working Mechanism: How does CANDY achieve robustness against DNC?

4. Approach Necessity: Why is it necessary to design an approach for the DNC problem
instead of using existing noisy correspondence learning methods?

5. Approach Generalizability: Can CANDY be used in a plug-and-play manner to endow
other contrastive MvC methods with robustness against DNC?

4.1 Configurations and Implementation Details

CANDY is designed as a plug-and-play solution to endow most existing contrastive MvC methods
with robustness against the DNC problem. Therefore, we choose the SOTA contrastive MvC method,
namely, DIVIDE [28]], as our baseline. Specifically, we retain the architecture and pipeline of
DIVIDE, modifying only the loss function. Following DIVIDE, to obtain a good initialization for
the neural networks, we use the vanilla contrastive loss by setting the target C(V1-¥2) in Eq.|1|as the
identity matrix I for the first 20 epochs of training. To endow DIVIDE with robustness against DNC,
we incorporate context-based semantic mining and spectral-based correspondence denoising modules,
alongside the soft contrastive loss (Eq.[I). Since MvC requires training and clustering on the same
dataset, we conduct the view realignment strategy on the learned representation by following the
PVP studies [20} 21]]. For achieving clustering, we concatenate the realigned representations across
views to form a common representation of the MvC data and then apply the k-means algorithm by
following [25]].

In the experiment, CANDY is implemented with PyTorch 2.1.2, and the model is optimized with
the Adam [41] optimizer with a learning rate of 0.002 across all experiments, with a batch size fixed
to 1024. All evaluations are conducted on Ubuntu 20.04 OS with NVIDIA 3090 GPUs. The scale
parameter o in Eq. [3|is fixed as 0.07 across all experiments. The experiments are carried out on the
following five widely-used multi-view learning datasets.

* Scene-15 [42] includes 4,485 images across 15 categories. We employ PHOG and GIST as
two distinct views following [[18]].

 Caltech-101 [43] consists 8,677 images collected from 101 classes. We use two kinds
of deep features extracted by the DECAF and VGG19 neural networks as two views
following [44]].

* LandUse-21 [45] contains 2,100 satellite imagery samples in 21 categories. We employ the
PHOG and LBP features as two views following Lin et al. [46].

* Reuters [47] is a repository of news content in multiple languages with 18,758 samples.
Following [48]], we transform the texts into a 10-dimensional latent space with a conventional
autoencoder and use English and French as two different views.



Table 1: The statistics of false positive and false negative ratios (%) with respective to different
datasets and 7 in the experiments.

Caltech101 LandUse21 NUSWIDE Reuters Scenel5
FP FN FP FN FP FN FP FN FP FN

0.0 000 284 000 473 0.00 999 0.00 2140 0.00 691
02 1934 284 19.10 473 1798 9.99 1567 2140 18.68 691
0.5 4845 284 4733 473 4507 9.99 39.64 2140 4642 691
0.8 7748 284 7624 473 7203 9.99 6257 2140 7398 691

* NUS-WIDE [49] includes 9,000 images paired with their respective captions from 10
classes. We adopt a VGG19 neural network for the extraction of visual features, and a
Sentence CNN to extract the text features by following [50].

For comprehensive evaluations, we vary the noise ratio in the datasets by adopting the following
protocols. For the false positive correspondence, we select one view as the anchor and randomly
shuffle samples in other views according to the specified FP ratio n which is varied from 0%, 20%,
50%, to 80%. For the false negative correspondence, we adhere to the inherent FN ratio in each
dataset. For clarity, we present the statistics of FP and FN ratios for different datasets in Table
Notably, as the samples within the same instance would be regarded as negative if they do not belong
to the same class, the practical FP ratios might be slightly lower than the specified 7.

4.2 Comparison with State of the Arts (Performance Superiority)

In this section, we compare CANDY with eight SOTA MvC methods including the typical MvC
methods (DCCAE [51], BMVC [52]]), the PVP-oriented MvC methods (MvCLN [21], PVC [20],
SURE [18]], CGCN [53]]), the false-negative-robust contrastive MvC (GCFAgg [54], and DI-
VIDE [238]]). Following the widely-used evaluation protocols, we adopt “ACC", “NMI" and “ARI" as
the metrics.

Table 2] presents the comparison results for each dataset and the average results overall, where one
could have the following observations. First, our CANDY outperforms all baselines in terms of
the average ACC and ARI when the FP ratio is 0%, which could be attributed to the powerful
semantic mining capacity on the false negatives. Second, all baselines experience heavy performance
degradation when encountering false positives. In contrast, CANDY achieves significant robustness
and remarkably outperforms all baselines by a large margin. The above two observations could verify
the effectiveness of CANDY against the DNC problem.

Furthermore, we explore the capacity of CANDY on handling the other important problem in MvC,
namely, missing views. To this end, we follow DIVIDE [28]] to recover the missing views. We
conduct experiments on four widely-used incomplete MvC benchmarks and compare CANDY with
other baseline methods [511 52, 55157, 18], 58160, 28]]. As demonstrated in Table 3} CANDY could
achieve competitive results comparable to SOTA methods, even though it is primarily designed for
handing DNC rather than missing modalities.

4.3 Ablation Studies and Parameter Analysis (Component Indispensability)

In this section, we conduct ablation studies and parameter analysis to investigate the indispensable
role and robustness of our modules.

As shown in Table 4] we design the following four method variants for the ablation studies: 1)
Warmup Only: using the identity matrix I as the target for Eq. [T throughout the training process; ii)
Re-alignment: adopting re-alignment strategy like the PVP studies; iii) SCD: performing the SCD
module to denoise the vanilla affinity graph A1—=v2) gpg using the resulting graph as the target for
Eq. |1} iv) CSM: the complete version of CANDY, adopting the CSM module to induce G (1?2 for
recalling the false negatives and performing Eq. [6]to obtain the final pseudo target. From the results,
one could observe that both the SCD and CSM modules play important roles in achieving robustness
against DNC.



Table 2: Clustering performance comparisons on five widely-used multi-view datasets. The results
are the mean of five individual runs. The best and second best results are shown in bold and underline,
respectively.

Scenel5 Caltech-101 LandUse21 Reuters NUS-WIDE Average
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

DCCAE (ICML’15) 34.6 39.0 19.7 458 68.6 37.7 15.6 24.4 44 420 203 8.5 475 17.1 37.6 37.1 339 21.6
BMVC (TPAMI'18) 40.5 41.2 24.1 50.1 72.4 339 253 28.6 114 424 219 151 360 21.0 16.5 38.9 37.0 20.2
PVC (NeurlPS'20)  38.0 39.8 21.1 20.5 51.4 157 168 252 5.6 441 27.1 27.1 193 7.7 3.8 27.7 302 147
MVCLN (CVPR’21) 37.9 42.3 25.6 39.6 65.3 32.8 26.1 30.7 12.5 38.8 42.1 252 54.1 383 357 393 43.7 264
0% SURE (TPAMI'23) 41.0 432 250 43.8 70.1 29.5 25.1 28.3 10.9 49.1 29.9 23.6 574 44.8 38.3 43.3 433 255
GCFAgg (CVPR'23) 422 42.5 244 56.6 80.7 37.9 27.5 31.3 14.0 344 238 10.5 41.1 32.1 18.6 404 42.1 21.1
CGCN (TCSVT’24) 42.9 43.4 250 49.1 752 33.8 28.8 36.0 15.0 458 27.0 22.3 61.2 48.1 41.2 45.6 459 27.5
DIVIDE (AAAI'24) 49.1 48.7 31.6 62.2 83.0 50.5 32.3 39.7 18.1 59.3 39.5 29.0 45.1 309 19.4 49.6 48.4 29.7
CANDY (Ours) 420 41.6 24.7 67.3 83.8 60.0 30.6 36.5 162 57.7 30.8 37.1 62.1 49.0 37.0 51.9 483 35.0

DCCAE (ICML’15) 32,9 17.1 29.6 36.9 39.2 60.1 150 3.8 17.4 41.6 13.1 193 41.6 11.6 26.9 33.6 17.0 30.7
BMVC (TPAMI'18) 20.0 102 4.7 427 582 246 161 13.0 43 364 119 8.1 27.7 107 7.7 28.6 208 9.9
PVC (NeurlPS'20)  31.2 25.5 13.6 8.3 302 3.8 22.8 28.0 84 324 154 153 343 222 13.6 258 243 10.9
MVCLN (CVPR’21) 39.3 36.7 21.7 43.3 64.0 52.8 24.4 26.1 10.8 37.9 359 20.3 425 293 21.3 37.5 38.4 254
20% SURE(TPAMI'23) 40.0 37.3 21.5 269 49.9 18.0 252 27.4 11.6 40.7 20.9 15.8 57.0 45.0 38.6 38.0 36.1 2I.1
GCFAgg (CVPR’23) 40.9 38.6 22.7 50.1 70.6 30.1 25.7 27.8 11.9 352 19.0 10.8 38.6 233 15.6 38.1 359 182
CGCN (TCSVT’24) 40.7 38.0 22.1 40.8 649 27.2 27.0 31.4 133 435 23.0 19.4 58.0 41.7 359 42.0 39.8 23.6
DIVIDE (AAAT'24) 42.4 39.9 24.5 48.3 69.1 38.0 30.9 35.1 162 553 36.9 31.0 449 283 18.2 44.4 419 25.6
CANDY (Ours) 404 40.3 237 65.9 82.3 60.1 30.5 35.3 15.7 542 27.9 33.8 60.3 47.1 369 50.3 46.6 34.0

DCCAE (ICML’15) 26.8 10.2 19.8 27.0 26.8 49.8 133 2.8 132 37.7 9.2 125 323 7.1 135 274 112 21.8
BMVC (TPAMI'18) 13.6 39 1.4 265 342 89 135 75 19 266 33 23 184 3.1 19 19.7 104 3.3
PVC (NeurlPS’20) 203 10.2 13.6 7.4 21.8 5.0 20.6 285 8.7 429 235 234 24.1 10.1 9.9 23.1 188 12.1
MVCLN (CVPR’21) 41.3 19.7 15.1 214 39.1 11.7 21.4 21.8 7.8 34.8 35.5 19.7 31.7 16.6 10.7 30.1 26.5 13.0
50% SURE (TPAMI'23) 37.1 35.7 20.3 19.9 41.7 13.2 23.1 22.8 8.9 38.0 18.5 14.3 350 17.4 12.0 30.6 27.2 13.7
GCFAgg (CVPR’23) 34.1 329 17.3 422 63.0 24.8 25.2 249 109 285 89 45 26.7 105 64 31.3 28.0 12.8
CGCN (TCSVT’24) 32.5 29.5 15.7 334 59.3 21.6 25.8 28.2 11.9 40.5 16.1 14.1 50.1 33.8 27.4 36.5 33.4 18.1
DIVIDE (AAAI'24) 37.4 34.0 20.3 39.1 58.7 32.5 28.1 30.4 13.5 41.2 19.4 14.8 44.0 23.9 16.6 38.0 33.3 19.5
CANDY (Ours) 41.3 39.4 24.0 60.7 79.0 56.6 29.9 33.1 15.2 47.4 21.7 27.3 58.1 43.2 34.5 47.5 43.3 31.5

DCCAE (ICML’15) 209 6.7 144 184 158 418 145 32 134 353 7.6 100 362 149 21.9 251 9.6 20.3
BMVC (TPAMI'18) 105 1.5 03 119 183 15 101 42 04 213 05 01 131 06 02 134 50 05
PVC (NeurlPS'20) 203 102 4.6 7.5 20.8 42 225 293 93 357 132 13.1 193 7.7 38 211 162 7.0
MVCLN (CVPR’21) 35.7 162 13.9 139 342 109 17.0 15.7 44 243 28.1 124 243 100 57 23.0 208 9.5
80% SURE(TPAMI'23) 27.4 30.7 142 162 383 9.0 180 17.6 55 34.6 155 13.0 237 94 54 240 223 94
GCFAgg (CVPR'23) 265 24.8 11.4 267 455 12.6 224 230 87 256 4.6 27 170 30 1.5 236 202 74
CGCN (TCSVT’24) 28.7 24.0 12.5 21.3 46.6 132 252 27.7 114 29.0 7.9 65 50.1 34.6 28.0 30.9 282 14.3
DIVIDE (AAAI'24) 34.4 304 183 27.8 50.8 21.1 27.1 28.1 12.8 41.1 24.7 19.5 458 283 19.1 352 32.5 18.2
CANDY (Ours) 38.8 36.6 20.7 52.6 76.8 52.9 28.1 31.3 13.5 37.0 12.4 15.6 55.6 39.1 32.6 42.4 39.2 27.1

FP Ratio Methods

Table 3: Clustering performance on incomplete multi-view datasets, in which 50% of samples are
with missing views. The results are the mean of five individual runs. The best and second best results
are shown in bold and underline, respectively.

Scenel5 Caltech101 Reuters LandUse21 Average
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

DCCAE (ICML’15)  29.0 29.1 12.9 29.1 58.8 23.4 47.0 28.0 145 149 209 3.7 30.0 342 136
BMVC (TPAMI'18) 32,5 30.9 11.6 40.0 585 102 32.1 7.0 29 188 187 3.7 309 288 7.1
PMVC (AAAT 14) 255 254 113 503 74.5 415 293 74 44 200 23.6 80 313 32.7 163
DAIMC (IICAI'18)  27.0 23.5 10.6 562 78.0 41.8 409 18.7 150 193 195 58 359 349 183
EERIMVC (TPAMI'20) 289 27.0 84 43.6 69.0 264 298 120 42 22.1 252 9.1 31.1 333 120
SURE (TPAMI'22)  39.6 41.6 23.5 34.6 57.8 19.9 47.2 309 233 23.1 286 10.6 36.1 39.7 19.3
DSIMVC (ICML'22)  30.6 35.5 172 164 248 9.2 39.9 19.6 17.1 18.6 188 5.7 264 247 123
DCP (TPAMI’22) 39.5 424 23.5 443 71.0 453 346 17.5 2.9 222 27.0 104 352 39.5 20.5
Prolmp (IICAI'23)  41.6 42.9 253 363 654 254 519 35.5 28.5 224 26.6 9.9 38.1 42.6 22.3
DIVIDE (AAAI'24)  46.8 45.7 29.1 634 825 52.4 54.7 37.3 28.6 30.0 35.8 16.0 48.7 50.3 31.5
CANDY (Ours) 40.0 40.2 24.1 69.5 83.9 65.5 542 34.8 27.2 28.8 31.1 144 48.1 47.5 32.8

Methods




Table 4: Ablation studies on the Caltech-101 and NUS-WIDE datasets with FP ratio of 20% and
50%. v represents using this component.

Caltech-101 NUS-WIDE
ACC NMI ARI ACC NMI ARI

FP Ratio Warmup Only Re-alignment SCD CSM

v 46.9 67.5 29.5 57.5 37.9 33.1
20% v 4 49.9 70.9 323 58.6 39.8 34.7
0 v v v 56.5 78.4 384 58.1 43.6 37.0
v v 4 v 65.0 82.3 60.1 60.3 47.1 36.9
v 35.6 54.2 22.5 442 21.0 17.2
50% v v 41.1 60.3 26.3 46.6 23.8 19.8
0 v v v 54.0 76.6 36.2 55.6 40.9 35.0
v v v v 60.7 79.0 56.6 58.1 43.2 34.5
1400 4 True Positive True Positive True Positive
False Positive 2000 False Positive 35007 False Positive
1200 4
30001
10004 1500 4 2500 4
800 2000
600 1000 4 1500
400 4 5004 10001
200 5004
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(a) Warmup only (b) Ours (50 epochs) (c) Ours (Converged)

Figure 3: The normalized similarity distribution of true positive and false positive pairs.

Figures [5a] and [5b] demonstrate that our method is robust to the selection of the denoising hyper-
parameter 7). Notably, setting 7 too high would destroy the structural information of the high-order
graph G(v17v2) Therefore, we fix 7 at 0.2 for all experiments without elaborated tuning.

4.4 Visualization on the Robustness (Working Mechanism)

To shed light on the working mechanism behind CANDY, we visualize the achieved robustness
against the false positive and negative correspondences, respectively. Fig. 3] depicts the distribution
of true and false positive pairs, where one could observe that the SCD module could remarkably
distinguish the noisy correspondence from the clean one, thus supporting the robustness against false
positive correspondence. Meanwhile, Fig. [ presents the false negative recalling effects of different
method variants, which demonstrate the significant semantic mining capacity of our CSM module
and the polishing ability of the SCD module.

MSE=0.1025 MSE=0.1394 MSE=0.0915 MSE=0.0890 MSE = 0.0000

1000 1000
0 o

200 400 600 800 1000

(a) Warmup Only (b) DIVIDE [28]] (c) Ours w/o SCD (d) Ours (e) Ground Truth

Figure 4: The visualization of the cross-view similarity matrix, where each block is ordered using the
ground-truth labels. For quantitative comparisons, we report the MSE between each result and the
ground truth.

4.5 Comparisons with Noisy Correspondence Learning Approach (Approach Necessity)

As claimed in Related Works, we argue that the existing noisy correspondence learning cannot
address the DNC problem well. In this section, we verify the necessity to devise a new approach



Table 5: Performance comparisons between the SOTA noisy correspondence learning method (namely,
RCL) and CANDY on handling the DNC problem. For a fair comparison, we adopt the same backbone
(DIVIDE) for RCL as used in CANDY.

dataset Caltech-101 NUS-WIDE

method ~ DIVIDE[28]+RCL[61] DIVIDE+Ours DIVIDE+RCL DIVIDE+Ours

FPrato ACC NMI ARl ACC NMI ARl ACC NMI ARl ACC NMI ARI

0.0 449 705 28.0 67.3 838 600 61.0 454 406 621 490 37.0
0.2 384 598 21.0 659 823 601 532 358 299 603 471  36.9
0.5 276 445 12.0 60.7 79.0 56.6 364 198 139 581 432 345
0.8 16.7 32.1 8.2 526 768 529 220 6.5 3.6 556 391 326

to the DNC problem. To this end, we adopt the SOTA noisy correspondence learning method [[61]
in the cross-modal retrieval area for the MvC task using the same architecture (namely, DIVIDE)
as CANDY. Table [5] summarizes the comparison results, highlighting the necessity of developing
DNC-robust methods for contrastive MvC.

4.6 Study on the Generalizability (Approach Generalizability)

CANDY aims at generating a DNC-robust pseudo target for the existing contrastive MvC methods.
To verify the generalizability of CANDY, in this section, we apply CANDY on another contrastive
MvC baseline, namely, AECoKM. The results of “AECoKM" and “AECoKM+OQOurs" are shown in
Fig. where the two methods are conducted with the false positive ratio varying from 0.0 to 0.9
with an interval of 0.1. As one can observe, our CANDY could remarkably enhance the robustness
and effectiveness of the baseline, demonstrating the plug-and-play role of our method.

60

80 —¥— AECoKM ACC
ACC 70 —— ACC ‘\/r/l\‘—‘\« AECoKM NMI
70 NMI NMI 50 —¥— AECoKM ARI

60 _ o Oumace
0 —— ARI —— ARI w0 \/ e Owsh
o ounAn
50
% 30
0 N ’“/\\ \

20

30 30 e T ——"
20 20 10
10 o T ———
01 02 03 04 05 06 07 08 09 10 01 02 03 04 05 06 07 08 09 0.0 01 02 03 04 05 06 0.7 0.8 09
Threshold Threshold FP Ratio
(a) Caltech-101 (b) NUS-WIDE (c) CoAEKM NUS-WIDE

Figure 5: (a-b) Sensitivity studies of CANDY on the hyper-parameter n for spectral denoising.
(c) Investigation of the plug-and-play role and robustness of CANDY, where AECoKM is another
contrastive multi-view clustering (MvC) baseline to which we transferred CANDY.

5 Conclusion

In this paper, we reveal and study a novel and practical problem within the field of contrastive Multi-
view Clustering (MvC): Dual Noisy Correspondence (DNC). In brief, DNC involves both the false
positive correspondences that arise during data collection, and the false negative correspondences
that are inherent in the random sampling of contrastive MvC. To address this issue, we present
CANDY comprising two novel modules: Context-based Semantic Mining (CSM) and Spectral-
based Correspondence Denoising (SCD). On the one hand, CSM dexterously leverages contextual
information to transform distinct views into a common contextual affinity space, thereby uncovering
the semantically-associated false negatives. On the other hand, SCD refines the pseudo target to
mitigate the adverse impact of false positives by using the spectral denoising technique. By integrating
these models, our method provides a plug-and-play solution that could enhance the robustness of
the most contrastive MvC methods against DNC. Extensive experiments on a broad spectrum of
scenarios have validated the effectiveness of CANDY. In the future, we plan to extend CANDY to
address more practical scenarios, such as simultaneously handling both noisy correspondence and
missing modalities.
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