This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2023.3277827

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Concept Parser with Multi-modal Graph Learning
for Video Captioning

Bofeng Wu, Buyu Liu, Peng Huang, Jun Bao, Xi Peng, Jun Yu*, Senior Member, IEEE

Abstract—Conventional video captioning methods are either
stage-wise or simple end-to-end. While the former might in-
troduce additional noise when exploiting off-the-shelf models to
provide extra information, the latter suffers from lacking high-
level cues. Therefore, a more desired framework should be able
to capture multi-aspects of videos consistently. To this end, we
present a concept-aware and task-specific model named CAT
that accounts for both low-level visual and high-level concept
cues, and incorporates them effectively in an end-to-end manner.
Specifically, low-level visual and high-level concept features are
obtained from the video transformer and concept parser of CAT.
And a concept loss is further introduced to regularize the learning
process of concept parser w.r.t. generated pseudo ground truth.
To combine multi-level features, a caption transformer is later
introduced in CAT, where visual and concept features are the
inputs and caption is its output. In particular, we make critical
design choices in the caption transformer to learn to exploit
these cues with a multi-modal graph. This is achieved by a
graph loss that enforces effective learning of intra and inter
correlations between multi-level cues. Extensive experiments on
three benchmark datasets demonstrate that CAT achieves 2.3 and
0.7 improvements in the CIDEr metric on MSVD and MSR-VTT
compared to the state-of-the-art method SwinBERT [1], and also
achieves a competitive result on VATEX.

Index Terms—Video captioning, Transformer, Multi-modal
Learning, Graph Learning.

I. INTRODUCTION

S one of the most popular tasks in cross-modal learning,

video captioning aims to take full advantage of vision
and language information, then describe the content of the
video with natural language. A family of existing approaches
[2]-[14] to this problem learn to extract both low-level visual
cues and extra scene [8], [15] or syntax [9], [10], [16],
[17] cues to generate captions. Though achieving promising
results, these methods are typically stage-wise [8], [13] and
exploit off-the-shelf models that were originally designed for
other tasks when performing feature extraction, such as from
scene graph generation [18] and natural language translation
[19], leading to interruption in gradient and addition noises
when generating captions. Instead, another line of research
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Fig. 1: Comparisons of different video captioning frameworks.
Two types of conventional methods: a) A stage-wise pipeline that
extracts low-level visual and extra scene or syntax cues with the
off-the-shelf approaches to generate captions. b) An end-to-end
framework where raw video frames are directly parsed for caption
generation. Our CAT: a novel unified end-to-end framework that
leverages high-level concepts and low-level visual cues extracted
from video input, and further incorporates a multi-modal graph to
effectively model the correlations between these two.

[1] proposes an end-to-end framework where transformer is
introduced to both perform feature extraction and bridge the
gap between visual and caption spaces. Despite solving the
above-mentioned problems of stage-wise models, this line of
methods suffers from lacking high-level cues, e.g., event or
content. In summary, a unified framework that is capable of
capturing multi-level cues in an end-to-end manner is lacking
in video captioning.

This unified end-to-end framework is challenging however,
primarily due to a lack of supervisions at different levels and
effective combinations of multi-level representations. Inspired
by [20], we propose to exploit concept as high-level cues,
e.g., detailed events “race” in Figure 1, which is hard to
produce by only visual information. On the one hand, concept
lies in between visual and language spaces, which not only
supplements the visual cues but also provides an efficient way
of bridging the gaps between these two. On the other hand, the
ground-truth concepts can be obtained from video captioning
annotations effortlessly with the help of NLP tools [21],
which addresses the supervision lacking problem. Moreover,
we introduce a multi-modal graph to explicitly learn the
relationship among three spaces, resulting in both state-of-the-
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art performance and more interpretable predictions.

Specifically, we employ a transformer-based architecture for
video captioning wherein both concept cues and multi-modal
graph are incorporated. Our unified framework, or a concept-
aware and task-specific model named CAT, consists of three
modules, a video transformer, a concept parser, and a caption
transformer. The video transformer is in charge of extracting
low-level visual features from input video sequence, which
thereafter are the input of concept parser and caption trans-
former. Our concept parser leverages low-level features and
extracts high-level concept cues, where deep-supervision of
concept loss is introduced based on generated pseudo ground-
truth as regularization. Later on, the caption transformer takes
the output of both concept parser and video transformer, and
generates captions on given video sequence. To effectively
explore multi-level representations, a multi-modal graph is
introduced in the caption transformer where the relationship
between various spaces can be learned and modeled in an
explicit manner. To the best of our knowledge, CAT is the
first unified video captioning framework that is capable of
capturing multi-level cues in an end-to-end fashion.

We validate our ideas on three publicly available datasets,
including MSVD [22], MSR-VTT [23], and VATEX [24], and
report our performances with four evaluation metrics designed
for captioning tasks. We observe the SOTA performance
on MSVD and MSR-VTT datasets, particularly 2.3 and 0.7
performance improvement of CIDEr [25] over the state-of-
the-art methods. Extensive ablation studies also showcase the
effectiveness and interpretability of our concept parser and
multi-modal graph. The main contributions of this paper can
be summarized as follows.

o A novel unified framework CAT to effectively learn and
combine multi-level cues in the video captioning task in
an end-to-end manner, which figures out the abundant
information in videos and learns a common space for
both visual and textual modality representations.

o A novel concept parser to extract concepts in videos,
which denotes high-level cues for video understanding.
Moreover, a multi-modal graph learns to fuse the visual
and the concept representations during the training stage,
bridging the gap between the multi-level representations.

o SOTA performances on three benchmark datasets, includ-
ing MSVD, MSR-VTT, and VATEX.

II. RELATED WORKS
A. Video Captioning.

Recent researches mostly follow two types of frameworks,
i.e., stage-wise, and end-to-end, to solve the video captioning
task. Most stage-wise methods [2]-[6], [11], [12], [26]-[28]
have utilized a variety of 2D/3D feature extractors [29]—[32]
or object detectors [33]-[35], to extract the low-level visual
features, followed by a language decoder [36] to decode these
features into captions. To supplement more information, a
portion of efforts [7]-[10], [13], [14], [16], [17] proposes to
extract syntax or scene cues through off-the-shelf models. In
terms of syntax cues, [10] presents a syntax-aware model that
generates syntax triplets from low-level visual features, and

then fuses these syntax triplets and visual features for caption
generation. As far as scene cues goes, [8] leverages the prior
knowledge graph and a reasoning module to bridge the object
and attributes that are detected offline to a commonsense,
or scene graph, thus supplementing scene cues. Zhang i.e.,
[37] propose a relational graph-based context-aware question
understanding scheme, which designs a sparse graph attention
network to enhance the user intention comprehension from
local to global. Though the remarkable progress they achieved
demonstrates these cues are beneficial to results, there still
exist two challenges, i.e., interruption in gradient caused by
stage-wise manners, and additional noise introduced from off-
the-shelf models. To deal with the first challenge stage-wise
model occurs, an end-to-end framework named SwinBERT [1]
is proposed and achieved promising results. SwinBERT is a
transformer-based model that directly takes raw video frames
as input to generate caption end-to-end, thus addressing the
interruption of gradient propagation. The end-to-end approach
did achieve good results, but there are no feasible methods
yet in the video domain that extracts high-level cues within an
end-to-end architecture. These challenges inspire us to propose
a framework to extract high-level cues without the need for
off-the-shelf models, and cues extraction can be merged into
end-to-end training.

B. Vision-Language Models.

Previous works [38]-[42] propose pure-transformer [43]
frameworks and derive superior performance in the image task.
Inspired by them, recent researchers [1], [44]-[51] build video-
language models and showcase great success in video tasks
like video captioning [24], video question answers [52], video-
textual retrieval [23]. They propose several new transformer
architectures, including UniVL [50], ViViT [44], TimeS-
former [45], HMTN [49] and VideoCoCa [51], that can lever-
age spatial-temporal attention for improving representation
learning and also demonstrate the capability of the transformer
in dealing with spatial-temporal sequences. In recent years,
some efforts have focused on the computational efficiency of
the transformer model. They propose to achieve a trade-off
between speed and efficiency by variant the internal structure
of the transformer. In particular, [53] prune the transformer
architecture and show the close performance while model spar-
sity is maintained at 50%-70%. And the latest approach Video
Swin Transformer [46] further variants the self-attention block
of the transformer by introducing locality inductive bias into
the self-attention algorithm, and achieves good performance
on action recognition benchmark [32]. These works inspire
us to inject an additional cues extractor into the transformer
to achieve end-to-end cues extraction, and how to make the
attention module enable dealing with our multi-level cues
effectively and efficiently needs further consideration.

III. METHODOLOGY

In this section, we propose a novel concept-aware and task-
specific framework named CAT for video captioning. We first
introduce the model architecture in Sec. III-A and present the
learning details in Sec. III-B.
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Fig. 2: Overview of our proposed framework: A sequence of raw video frames is fed into the video transformer and outputs visual
features (v). Then the concept parser takes v as inputs and produces concept features (c). Lastly, visual and concept features are input into
the caption transformer, generating a natural language sentence in a sequence-to-sequence way, with the help of multi-modal graph.

A. Model Architecture

Our proposed model consists of three modules, including a
video transformer, a concept parser, and a caption transformer.
The video transformer aims to encode the dense video frames
by extracting features that capture low-level visual informa-
tion. A concept parser later utilizes these features to generate
concepts, which in the meantime also supplements high-level
cues. Finally, features from the aforementioned modules are
parsed to the caption transformer to produce natural language
captions. We introduce each module in the following sections
and provide the overall framework in Figure 2.

Video Transformer. Videos, compared to static images, pro-
vide more spatial-temporal cues. Therefore, modules that are
capable of capturing these complex cues in an efficient manner
are desired in video-related tasks. To this end, we introduce a
Video Transformer, which inputs video frames and outputs
visual features as our first module. On the one hand, the
Video Transformer takes in dense frames where information
loss is highly reduced. On the other hand, it modifies the
attention from globality to the spatial-temporal locality to
accelerate the computation. Specifically, we follow the design
in [46] as they showcase good efficiency-accuracy traded-
offs in multiple video caption benchmarks. Please note that
our Video Transformer is not restricted to a certain model
architecture but other architectures can be also deployed. Our
decision is made mainly for re-productivity and performance
purposes.

We densely sample the video into 7" x H x W x 3 size
as the input of the video transformer, consisting of 1" frames
and each has H x W x 3 pixels. The video transformer then
outputs N = % X 35 X % visual features, which we denote
as v = {v; € RP}N, where v; denotes i-th visual feature.
N and D denote the total number and dimension of visual
feature respectively. These output features are later utilized as

input for subsequent concept parser and caption transformer

, victory]
a victory.

Pseudo GT Concepts: [people, ride,
GT Caption: Many people are riding

, race]
in a race.

Fig. 3: Visualization of the two videos with their ground-truth
captions and pseudo ground-truth concepts. The colored words are
extracted by NLP toolkit as concepts. It is noted that the previous
methods usually miss the “victory” and “race” events, resulting in
rough consequences.

to provide low-level visual information.
Concept Parser. Though the video transformer showcases
good ability in terms of visual feature extraction, observations
in recent work [20] demonstrate that concept is beneficial
for captioning tasks. Intuitively, concepts reflect high-level
information in videos, e.g. event in sports video, leading to
more detailed descriptions that low-level information is less
good at. Inspired by that, we introduce another module, or con-
cept parser (CP), in video captioning. To effectively leverage
caption-related concepts without requesting additional human
annotations, we propose to obtain pseudo ground-truth of
concept out of captioning ground-truth. Specifically, we deploy
an NLP tools [21] to extract nouns and verbs of ground-
truth captions as the pseudo ground-truth and we visualize
some examples of obtained pseudo ground truth concepts in
Figure 3.

Our concept parser consists of one pooling layer and two
projection layers. The pooling layer first averages N visual
features, resulting in a visual representation v = % Ziv v;,
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Fig. 4: Overview of our proposed concept parser. In this figure,
we flatten out our visual features (v) and concept features (c) to help
better understand the concept parser.

where © € RP denotes our visual-level representation. Then
the projection layers receive v as input and output concept
probabilities p € R, where K is the size of concept space.
Specifically, we formulate the concept prediction problem as a
multi-class classification task, where p. denotes the probability
of the existence of c-th concept in current video sequence.
Later, we rank all concepts w.r.t. their probabilities and the
top-k concepts are selected and tokenized to concept features
¢ = {¢; € RP}* More details of our concept parser can be
found in Figure 4.

Caption Transformer. Given visual and concept features,
our next step is to integrate them in an effective manner so
that information from various levels could contribute to each
other. To this end, we introduce the last module of CAT, or
caption transformer. Together with our multi-modal graph, the
caption transformer can intellectually bridge the gap among
the visual, concept, and caption spaces, resulting in natural
language caption output.

The caption transformer f.,, takes three types of inputs,
including the visual and concept features from video trans-
former and concept parser, as well as the sentence features
w = {w; € RP}IM that is tokenized from masked sentence
Smask With an NLP tokenizer [19], where w; and M denote
the feature vector of word in s,,,,s% and the length of sentence,
respectively. The goal of caption transformer f.,, is then
to predict the masked words therefore to complete the full
sentence s. This is achieved by seq2seq [19]. Mathematically,
we have:

s = fcap(smaskavac) (D

Multi-modal Graph. As observed in literature [46], long-
range inputs of caption transformer and the activation function
in attention module of transformer block [43] result in ineffi-
ciency in computation and inferior performance respectively.
To alleviate these, we introduce a multi-modal graph (MG)
in our caption transformer. Our multi-modal graph learns to
model the relationship between multi-level features in an ex-
plicit manner, and further refines their importance. Specifically,
our fully multi-modal graph G = {n,,ep q}p, consists of
pel,...,(M+N+k)] nodes and (M+N—+k)x (M+N+k)
edges. We denote n,, as the p-th node, which can be either
word, visual, or concept feature. And e, , defines the edge
value between the p-th and ¢-th node. Our goal is to learn the
€p,q such that our multi-modal graph captures and combines
the multi-level features effectively.

We then formulate this learning process as a matrix learning
problem. To this end, we represent G with a (M + N + k) x
(M + N +k) matrix A, where the value at position p, ¢ is equal
to e, 4. Then we deploy this matrix at the attention module of
caption transformer to refine the input of caption transformer,
ie,n={n, € RD}Z],V”N*’“, and produces refined nodes n’.
Mathematically, we have:

n = |[w;c; v,

a4, k,v=nWq,nWy,nW,,
A=)\1-A),

n' = softmaz(A + qk’ /\/dy)v,

where q, k, and v denote query, key and value features, respec-
tively, Wq, Wy, and W, are three learnable projections that
share same size. Furthermore, A is a hyper-parameter, usually
set to a large negative value, dj, is the dimension of k, and [; ]
denotes concatenation.

2

B. Model Learning

Our overall loss function £ consists of three terms and our
model is optimised in an end-to-end manner. Specifically, we
have:

L= ,LLEC + 'Y‘Cgraph + ‘C(:(Lpa (3)

where p and the « are hyper-parameters. And our training
object is to minimize the overall loss.

Concept Loss L.. To ensure that features from concept
parser are concept-related, we introduce a concept loss w.r.t.
generated pseudo ground-truth (See Sec. ITI-A). Assuming that
we have obtained pseudo ground-truth for concept, we adopt
the cross-entropy loss as below:

1 K

K

c=1

£c = ((1 _pg) IOg (1 _pc)+pg Ingc), (4)

where p¢ = {0,1} is the pseudo label of c-th concept. And
pe € [0, 1] denotes the predicted probability of c-th concept.

Graph Learning Loss L,.qp,. We introduce a graph learning
loss Lgrqpn to regularize our caption transformer, as we have
described in Sec. II-A. Our matrix A is firstly initialized
with prior knowledge and then learned with Lg.qpn. As for
initialization, we induce task-specific priors to define the
ep,q- Specifically, we set the value at position p, g, where
pell,..,M]and q € [(1,...,(M+ N +£k)], to one, which in-
dicates that caption generation will resort to visual and concept
features. Then a sequence mask [19] is deployed on the caption
region, i.e., the first M rows and M columns of A to achieve
sequence-to-sequence captioning. Afterward, we propose to
update only the visual and concept part of the matrix, or
A’ € RIWHR)X(N+E) consisting of only visual and concept
nodes and edges between these nodes. The main intuition
behind this design is that while concept and visual features
can be mutually informative, they might also contribute some
unrelated semantics, and our multi-modal graph should be in
a position to eliminate edges that bridge these semantics as
possible and reserve the significant information. To validate
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Fig. 5: Stats of three benchmark datasets. We summarize the top-100 most frequently appeared concepts extracted by NLTK toolkit and

demonstrate the concept distribution over datasets with three histograms.

this, we conduct ablations studies on graph initialization and most popular and most difficult one respectively, and VATEX

report our results in Sec. IV-C.
Our graph loss is defined as follows:

N+k N+k

1
Egraph:(N+k)x(N+k ZZAP ,q" (5)

=1 p/f

where A /g €Quals to ey n g4 M-

Captlonlng Loss L.,p. As described in Equ. 1 in Sec. III-A,
we introduce a masked sentence as input to our caption
transformer. Specifically, we follow the design in BERT [19]
that masks a portion of words by replacing them with a special
placeholder [MASK]. And the caption transformer predicts
the true value of masked ones, which has demonstrated itself
superior in captioning tasks. We implement Masked Language
Modeling on the last layer of the caption transformer and
produce the captioning loss L4, [19].

IV. EXPERIMENTS

In this section, we first introduce our experimental set-
tings, and then evaluate our model on three video captioning
datasets, MSVD [22], MSR-VTT [23], and VATEX [24],
via four metrics including BLEU@4 [54], METEOR [55],
ROUGE-L [56], and CIDEr [25]. Comprehensive ablation
studies on the effectiveness of each proposed module are also
conducted and reported.

A. Experimental Settings

Datasets. We mainly work on the following three datasets of
various sizes and difficulties. MSVD and MSR-VTT are the

is the largest one with long and high-quality annotations.

e« MSVD contains 1970 YouTube short video clips. Each

video is annotated with roughly 40 captions in English.
We separate the dataset into 1,200 train, 100 validation,
and 670 test videos, the same as previous works [1], [13],
[14].

MSR-VTT consists of 10,000 open-domain videos and
each video is annotated with 20 English captions. We
follow the official split which separates the dataset into
6,513 training, 497 validation, and 2,990 test videos [23].
VATEX is a large-scale dataset that contains 41,269
videos. Each video is annotated with 10 longer and
higher-quality captions in English. We follow the official
split: 25,991 videos for training and 6,000 public test
videos for testing [24].

Stats of Concepts Figure 5 demonstrates the concept
distributions over three benchmark datasets. Specifically,
it summarizes the top-100 most frequently appeared
concepts extracted by NLTK toolkit [21]. As can be
found in this figure, there exists strong bias where these
distributions are highly long-tailed. Since the videos in
three datasets are generally human-dominated, nouns like
“man” and “woman” appear frequently and occupy the
top of the distribution. Moreover, ball sports and instru-
ment usage also appear frequently as events, so “play” is
the most frequent verb. In addition, those concepts located
at the tail mean that they appear roughly the same times
in the dataset.
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e Video S .
Datasets ‘ Training  Testing ‘ Avg. Captions | Avg. Concepts
MSVD 1200 670 40 27.9

MSR-VTT 6513 497 20 33.8
VATEX 25991 6000 10 27.6

TABLE I: Properties of three datasets.

Pseudo Ground-truth Concepts. In order to generate pseudo
ground-truth labels for concept decoder from the above-
mentioned datasets, we utilize open-sourced NLP tools [21]
to extract the verbs and nouns in the ground-truth captions
as the concepts. We present the scale of the training/testing
set, number of captions, and the average number of concepts
ground-truth in each video in Table I.

Implementation Details. We implement our model mainly
with the PyTorch [58] and huggingface libraries [59], and
deep-speed [60] is used for automatic mixing precision train-
ing. In our experiments, we choose Video Swin Trans-
former [46] and BERT [19] as video transformer and caption
transformer, both the video and caption transformer consist
of 12 layers, where the sizes of hidden layers of these two
modules are 512 and 768 respectively, the video transformer
is initialized with Kinetics-600 pre-trained weights [46] and
caption transformer is initialized randomly. The sizes of two
projection layers in concept parser are 512 and 30522 (i.e.,
size of word space). In experiment, dropout rate is set to 0.1 to
mitigate overfitting. To achieve a trade-off between efficiency
and effectiveness, we densely sample 64 frames with the size
of 224x224 of each video on all datasets as the input of the
video transformer. Based on statistics reported in Table I, we
set k to 25, meaning that concept decoder predicts 25 concepts
for each video. Through multiple sets of experiments, we
finally set M and NN to 50 and 1568. In terms of loss weights,
we set 1 and y both to 0.5. Similar to CTN [20], the concept
shares the same vocabulary as the caption in experiments,
which reduces parameter size by avoiding introducing an extra
tokenization module. We exploit the AdamW optimizer [61]
with a warm-up scheduler to tune the learning rate.

During training, we follow the hyper-parameter design
in [19], [46] and set the number of epoch to 15 without any
early stop mechanism. In the Masked Language Modeling
phase, we mask half of the words in each sentence. All
experiments are conducted on 8 Nvidia A100 GPUs (40GB).
And it takes about 0.4h, 22h, and 42h to train the full model
and Imin, 3min, and 7min to perform dataset-wise inference
on MSVD, MSR-VTT, and VATEX respectively.

B. Main Results

To validate our ideas, we conduct extensive experiments
on publicly available datasets and report our performance
on four evaluation metrics, including BLEU@4, METEOR,
ROUGE-L, and CIDEr. Our results are then compared with
several state-of-the-art works [1]-[7], [9]-[14] in Table II.
Specifically, results are obtained on MSVD and MSR-VTT
datasets, and we also showcase the diverse architectures of the
listed methods to prove the improvement carried from the end-
to-end architecture. Our method outperforms existing methods

on both datasets and yields significant improvements on mostly
metrics. In particular, the proposed method improves the
CIDEr, which is specially designed for captioning and is con-
sidered more consistent with humans, by 2.3 and 0.7 points on
MSVD and MSR-VTT datasets, respectively. We believe these
improvements are due to the way our model extracts multi-
level cues and dynamically integrates them through a learnable
multi-modal graph. Compared with previous methods that only
focused on the implicit representations in the video or used
kinds of fixed graphs to integrate presentations, our method
can obtain more explicit video content representations, i.e.,
concept, and leverage the learnable graph to bridge the gap
between multi-level representations, which is more in line with
the video captioning task. The superior of these two parts is
detailed analyses in the Ablation Studies.

We further report our performance on VATEX in Table III.
Our method achieves competitive results, where most metrics,
including BLEU@4, METEOR, and ROUGE-L are on par
with the state-of-the-art method. The performance reveals that
our method also performs well on videos that have richer and
more specific content.

C. Ablation Study

In this section, we will investigate the impact of each

proposed module, followed by a graph learning study to
demonstrate the reasonable design of our framework. For
efficient training and inference, we further lighten our model,
wherein the number of input frames is reduced to 16 and
the layers of the caption transformer are halved. For a fair
comparison, we reproduce SwinBERT, an end-to-end and
transformer-based approach, and perform the same lightweight
to conduct experiments, while we also obtained the lightened
results from their official GitHub. We show the results of these
lightened models in Table IV.
Impact of Proposed Modules. In order to investigate the
impact of the proposed two modules, i.e., concept parser and
multi-modal graph, we showcase the ablation study in Table V.
At first, we present a baseline that consists of video and
caption transformer without concept and multi-modal graph,
demonstrated in the first row of Table V. Then we impose each
module on the baseline independently to prove the validity of
each individual one. The results in the second and third rows
prove that each module is helpful to the baseline. Particularly,
we observe the results in the fourth row can further prove that
our two modules are compatible and complementary when
impose simultaneously.

Additionally, to visualize the practical role that two modules
play in our proposed method, we pick one video from MSVD
and masked the key content (i.e., dog) with a black box,
then make CAT generate captions with the input of three
groups of concepts, including pseudo ground-truth (pseudo
GT), predicted, and fake, respectively. The results in the right
column in Figure 6 show that the additional concept group
with the “dog” or “cat” can help produce the missing subject
when “dog” is masked in the video, thus demonstrating the
effectiveness of concepts. While the video is unmasked, CAT
generates the proper caption even when misleading concepts
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Models Feature§ . MSVD MSR-VTT
Appearance Motion Region B@e4 M R C B@e4 M R C

PickNet [2] ResNet152 - - 523 333 696 765 413 277 598 441
SibNet [3] GoogleNet - - 542 348 71.7 882 | 409 275 602 475
OA-BTG [4] ResNet200 - MaskRCNN | 569 36.2 - 90.6 | 414 282 - 46.9
GRU-EVE [5] IncepResnetV2 C3D YOLO 479 350 715 781 383 284 60.7 48.1
MGSA [6] IncepResnetV2 C3D - 534 350 - 86.7 | 424 27.6 - 47.5
POS+CG [7] IncepResnetV?2 OpticalFlow - 52.5 341 713 88.7 420 282 61.6 487
POS+VCT [9] IncepResnetV2 C3D - 528 36.1 71.8 87.8 | 423 297 628 49.1
SAAT [10] IncepResnetV2 C3D - 46.5 335 694 81.0 | 399 277 612 51.0
STG-KD [11] ResNet101 13D FasterRCNN | 522 369 739 93.0 | 405 283 609 47.1
OpenBook [12] IncepResnetV?2 C3D - - - - - 339 237 502 529
ORG-TRL [13] | InceptionResnetV2 C3D FasterRCNN | 543 364 739 952 43.6 28.8 62.1 509
SGN [14] ResNet101 ResNext101 - 528 355 729 943 | 40.8 283 60.8 495
SwinBERT [1] Transformer 582 413 775 120.6 | 419 299 62.1 538
CAT | Transformer | 59.9 417 784 1229 | 421 302 625 545

TABLE II: This table reveals the performance comparison with existing methods on MSVD and MSR-VTT datasets in terms of

BLEU@4(B@4), METEOR(M), ROUGE-L(R), and CIDEr(C) scores. In which the “Features” column denotes the features used by this
method which are extracted by 2D-CNN, 3D-CNN, and object detector respectively.

Raw Video

A dog is swimming in a pool.

Masked Video

A dog is swimming in a pool.

Pseudo GT Concepts:
[dog, pool, swim ...]

Predicted Concepts:

[dog, pool, swim ..] A dog is swimming in a pool. -

Predicted Concepts:

- - A man is swimming in a pool.
[man, pool, swim ...]

Fake Concepts:

[cat, pool, swim ..] A dog is swimming in a pool. A

is swimming in a pool.

Fig. 6: Visualization of the role that concepts play in our CAT. We generate the caption with CAT by taking in different video and
concept pairs. The results present that our method is able to generate the caption associated with the input concept when the visual subject
is missing.

Raw Video Masked Video
= Se e E X
+H % y 9
Pseudo GT Concepts: A is licking a piece of watermelon. A is playing with a watermelon.

[cat, lick, watermelon...]

Predicted Concepts:

. A is licking a piece of watermelon. -
[cat, lick, watermelon...] gap

Predicted Concepts:

[cat, lick, clean...] - A

is licking its lips.

Fake Concepts:

[cat, lick, ball...] A is licking a piece of watermelon. A

is playing with a ball.

Raw Video

Masked Video

Pseudo GT Concepts:

[girl, play, phone..] A little is playing with a phone. A little is playing.
Predicted Concepts: . . . .
[girl, play, phone..] A little is playing with a phone. -
Predicted Concepts: . . .
[girl, play, use...] - A little is playing.
Fake Concepts: . . . . . . . .
A little is playing with a phone. A little is playing with a toy.

[gir], play, toy...]

Fig. 7: Additional visualization of the role that concepts play in our CAT. With the original and masked videos, as well as three categories
of concept sets (i.e., pseudo GT, predicted, and fake), CAT takes different pairs of video and concept set as inputs to predict captions, and
the results further demonstrate the interpretability of our CAT.

are introduced. We argue that this finding mostly benefits from
our multi-modal graph, proving that when dealing with the
unmasked video, the multi-modal graph consciously reduces

the importance of the concept information that mismatches the
video content.

Figure 7 showcases two pairs of examples where each pair
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Models | Modules MSVD Region MSVD
S |cp MG |B@4 M R C B C|Be4 M R C
X x| 534 388 756 1089 x x| 544 389 755 109.2 N A B
Baseline | v/ X 54.8 395 76.1 1113
7 | 552 304 761 1103 v x| 534 385 749 1072
x v | 548 389 758 110.1 k[ C D
CAT ‘ v v ‘ 56.6 39.6 764 112.5
TABLE V: Ablation studies of concept de- o ‘ 56.6 39.6 764 112.5 Fig. 8: Rough visualization of multi-
coder and multi-modal graph on MSVD bench- TABLE VI: Ablation studies of the graph modal graph. Four of these regions, A, B,
mark. initialization on MSVD benchmark. C, and D, consist the learnable part A’.
VATEX s
Models B@e4 M R C S 1
Shared Enc [24] 284 217 47.0 451 E‘
Shared Enc-Dec [24] 279 216 468 442
Support-set [57] 328 244 491 512
Open-Book [12] 339 237 502 575
ORG-TRL [13] 32.1 222 489 497 CAT. T ding it
. « 1wo men are wrestling 1in a competition.
SwinBERT [1] 38.7 262 532 730 Baseline: Two men are wrestling.
CAT | 387 262 535 724 \ -

TABLE III: Performance comparison on public test set of VATEX.

Settings MSVD
Models ‘ Frames Layers | B@4 M R C
SwinBERT (official) 32 12 557 397 757 1094
SwinBERT (repo) 16 6 558 395 760 110.8
CAT | 16 6 | 566 396 764 1125

TABLE IV: Results of the Lightened model.

consists of raw and masked videos, different input concepts
and their outputs. Our goal here is to demonstrate the impact
of concepts together with various input videos. Taking the first
pair of videos as examples, we mask the watermelon in the
raw video and thus produce the masked video. In addition,
pseudo GT concepts are extracted by NLTK toolkit [21] from
ground-truth captions, predicted concepts are generated by our
concept parser based on the video content, and fake concepts
are created by manually replacing the concept in pseudo GT
concepts that are associated with the masked content (i.e.,
“watermelon”) with other concepts (e.g., “ball”). As can be
found in this example, CAT is able to generate correct captions
for raw video regardless of the concepts input. When we mask
the watermelon in the video and input predicted concepts, CAT
assumes that the cat is licking its own lips because there is
no object to lick, and therefore predicts the event as “cat-
lick-lips”. In addition, when we input the pseudo GT or fake
concepts, CAT successfully fills the object but predicts an
inexact action “play”. We empirically believe this is due to
a lack of visual interaction between cat and object, thus CAT
tends to produce a verb that often appears together with “cat”
in the dataset, i.e., “play”.

Such observation is not always valid across all video se-
quences. And we provide a corner case in our second pair. For
instance, “phone” would not be occurred in output even being
provided as input through pseudo GT concepts, together with
masked video. In contrast, “toy” in fake concepts benefits the
caption output when video is masked. We believe this is due
to the fact that the event of “girl-play-phone” rarely appears in

Input Video

N
S A S m‘é"b S A ST LA/ Iy Fo S
FIIFETTTEILLTFEFELEETESS
[ .

CAT: A woman is painting her nails.
Baseline: Someone is applying nail polish.

Fig. 9: Heatmap of region D in multi-modal graph.

the dataset while “girl-play-toy” are more frequently occurs.
Therefore, CAT takes “toy” as an important cue for caption
generation rather than “phone”.

Impact of Graph Initialization. One another important matter
is why we reduce the interplay between irrelevant information
by graph learning instead of directly blocking the interactions
between multi-level features. As shown in Figure 8§, the
learnable part of our multi-modal can further divide into four
regions, where A and D are responsible for the self-integration
of visual and concept features, respectively, while B and C
are in charge of cross-integration. Specifically, we can set the
values of any region to zero, to enforce information not to
interact. To demonstrate the validity of graph learning, we
conduct experiments by deploying the zero mask on different
regions in the following three combinations:1) Mask the region
C. 2) Mask the region B. 3) Mask region B and region C
simultaneously.

Table VI presents the results of three settings on MSVD
datasets, and we also put the results of our CAT in the last
row. We observe that the results after masking the regions
are all worse than our CAT, proving that our learning strategy
has the advantage to reduce irrelevant edges. Moreover, noting
the fact that if we mask region C will result in the worst
consequence, we argue that the reason is top-k concepts still
have some wrong information. And without help from visual
features through graph learning, the wrong information still
exists and harms either the visual feature refining or caption
generation. We also find that when visual features are involved
in graph learning, indeed achieve better results. Referring to
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MSVD

Predicted Concepts: [egg
CAT: A woman is
SwinBERT: A person is cooking eggs.

GT1: A person cooks eggs.

GT2: A woman is cooking eggs in a cooking pan.

MSR-VTT

, woman, omelet, pan, .|
eggs in a pan.

Predicted Concepts: [wrestle, match, man, competition, stage...]
CAT: Two men are wrestling in a competition.

SwinBERT: Two men are wrestling.

GT1: A wrestling match is going on.

GT2: Two men in a wrestling match.

Predicted Concepts: [person, paper, fold, airplane, ]
CAT: A person is
SwinBERT: A person is folding a piece of paper into a paper
airplane.

how to make a paper airplane.

GT1: A person is folding a paper airplane on a table.
GT2: A man is showing how to make a paper airplane out of paper.

Fig. 10: Examples of predicted concepts and captions on three
benchmark datasets with our proposed CAT. Furthermore, the
predicted captions of SwinBERT have also been illustrated for
comparison. Although both two methods produce correct captions
at a coarse-grained level, the predicted captions of CAT are more
detailed and diverse captions.

the predicted captions of two videos in Figure 6, we believe
that thanks to our multi-modal graph, concept and visual
features can flexibly contribute caption generation.

To explicitly demonstrate how the multi-modal graph in-
fluences self-integration of concepts, We further show in the
heatmap of region D generated by CAT in Figure 9. The
heatmap is obtained by summing the vertical axes and then
scaling summed values to [0,1]. Take the second video for
instance, we can find that concepts like “nail” and “finger”,
which can be covered in visual features, will not be highlighted
in concept groups. On the contrary, those concepts denote
high-level information such as “woman” and “girl”, which
do not appear in video, contribute more to self-integration,
further producing the correct subject of the video. This fact
also demonstrates the effectiveness of our multi-modal graph.

D. Qualitative Results

Figure 10 visualizes the qualitative examples of CAT to-
gether with generated concepts. We further include the results
predicted by the remarkable model SwinBERT, thus intuitively
showing the improvement that our approach brings. It is noted
that the head predicted concepts almost hit the content in

Predicted Concepts: [oil, pan, cook, pour, ]
CAT: A is pouring oil into a pan.
GT1: Someone is pouring olive oil into a pan.

GT2: A man is adding oil to a pan.

Predicted Concepts: [cook,
CAT: A is putting butter into a container.
GTI1: A man is putting butter into a bowl.

, put, container, butter...]

GT2: A guy puts butter into a bowl.

Predicted Concepts: [apply, lady, , put, makeup...]
CAT: A is applying makeup to her face.

GT1: A woman is applying makeup to her face.

GT2: A woman is putting on makeup.

Predicted Concepts: [practice, player, ball, boy, throw...]
CAT: A man is shooting a ball into the basket.

GT1: A basketball player shoots a basket.

GT2 A boy is throwmg a basket ball in a basket.

et _ ot e,

Predicted Concepts: [bread, butter, somebody, cook, spread...]
CAT: A man is spreading butter on a slice of bread.

GT1: A man is buttering bread.

GT2: A man is spreading butter on garlic bread.

Fig. 11: Additional qualitative results of MSVD.

the video, thus allowing CAT to predict more detailed events
than the previous method. For example, in the case video of
VATEX, the “ ” usually can not be predicted by the
video captioning method based on vision detection or action
recognition however, relying on our concept parser, we have
covered the * ” in the concept group, and further generate
a caption that is close to GT2.

We supplement more qualitative results in Figure 11, 12,
and 13. We present the predicted concepts, predicted captions
and two ground-truth captions for each video. In Figure 11,
we notice that the video content and captions of videos in
MSVD [22] are straightforward, thus it is relatively easy
to predict accurate captions on these videos. Examples in
Figure 12 are from MSR-VTT [23]. Some events in exam-
ple videos cannot be directly reflected visually, but can be
reasoned based on visual cues, such as “speech” in the first
video. Again, CAT is capable of generating highly accurate
captions with most of events covered. VATEX [24] provides
more descriptive captions (See Figure 13), resulting in a more
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=

Predicted Concepts: [
CAT: A
GTI: A female politician is giving a speech.
GT2: A woman is talking.

is giving a speech.

Predicted Concepts: [ , street, shirt, camera, bike...]
CAT: A is riding a bike and talking to the camera.
GT1: A black man talks to the camera.
GT2: A man is riding a bike.

/ ' &

75 a5 : PEi\
Predicted Concepts: [ ly...]
CAT: A is applying makeup to her face with a brush.
GT1: A woman is applying makeup.

L

s makeuf), face, brush‘, app

GT2: A woman is putting on makeup.

r

Predicted Concepts: [field, man, ball,
CAT: A soccer
GTI1: A guy kicking a ball into a goal.
GT2: A man kicked a soccer ball.

, goal...]
kicks a ball into the goal.

Predicted Concepts: [song,
CAT: A is performing a song on stage.
GT1: A band is playing a country song on stage.

, stage, music, man...]

GT2: A band preforms a song on stage.
Fig. 12: Additional qualitative results of MSR-VTT.

challenging problem. In contrast, captions generated by CAT
in VATEX are less accurate compared to that in MSVD/MSR-
VTT. Nevertheless, they are semantically correct w.r.t given
videos.

E. Limitations and Future Works

In this work, we leverage an NLP tool to extract pseudo
ground-truth concepts. Our concepts have a few of noise due to
grammatical errors in the ground-truth caption. Moreover, the
strategy of selecting top-k concepts often introduces inexact
ones such as “do”, “someone”, efc., in the tail of concept
groups, that occur frequently in the ground-truth captions,
which affects the caption generation. In our future works, we
aim to develop a concept parser that can produce a variable
number of concepts, which can further reduce the impact of
concepts from the tail of the ordering.

, speech, interview, microphone, talk...]

10

Predicted Concepts: [
CAT: A group of
GT1: A group of tourist are riding camels across the sand.

, group, walk, dessert, ride...]
are riding camels in the dessert.

GT2: A group of people are touring through the desert on camels.

Predicted Concepts: [
CAT: A group of
GT1: A group of people are line dancing to loud music.

, woman, music, dance, play...]
are dancing in a room with a song playing.

GT2: People on a dance floor all do the same dance as music plays.

Predicted Concepts: [beach, sand, build, child, play...]

CAT: A little boy is building a sand castle on the beach.

GT1: A boy is digging the sand on the beach next to a sand castle.
GT2: At the beach, a toddler boy adds sand to a huge sand castle.

Predicted Concepts: [ , animal, demonstrate, show, make...]
CAT: A is demonstrating how to make a balloon animal.
GT1: A man is showing how to make a balloon animal.

GT2: A man is de

VIR
L
‘s S

Predicted Concepts: [ , tree, hold, field, show...]
CAT: A is showing how to plant a tree in the ground.
GT1: A man shows how to plant a tree in a wooded area.

scribing and demonstrating balloon

animal tying.

RS9

GT2: A man shows how to plant a tree the right way.
Fig. 13: Additional qualitative results of VATEX.

V. CONCLUSION

In this work, we propose a unified framework, which
consists of a video transformer, a concept parser, and a caption
transformer. With the supervision of concept loss based on
generated pseudo ground-truth, we can produce the high-level
concept features within an end-to-end fashion. Furthermore, a
multi-modal graph is particularly learned to better integrate the
multi-level features. Extensive experimental results on three
benchmark datasets verify the effectiveness of CAT.
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