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Abstract

Existing studies have empirically observed that the reso-
lution of the low-frequency region is easier to enhance than
that of the high-frequency one. Although plentiful works
have been devoted to alleviating this problem, little under-
standing is given to explain it. In this paper, we try to give
a feasible answer from a machine learning perspective, i.e.,
the twin fitting problem caused by the long-tailed pixel dis-
tribution in natural images. With this explanation, we refor-
mulate image super resolution (SR) as a long-tailed distri-
bution learning problem and solve it by bridging the gaps
of the problem between in low- and high-level vision tasks.
As a result, we design a long-tailed distribution learning so-
lution, that rebalances the gradients from the pixels in the
low- and high-frequency region, by introducing a static and
a learnable structure prior. The learned SR model achieves
better balance on the fitting of the low- and high-frequency
region so that the overall performance is improved. In the
experiments, we evaluate the solution on four CNN- and one
Transformer-based SR models w.r.t. six datasets and three
tasks, and experimental results demonstrate its superiority.

1. Introduction

Image super resolution aims to restore a high-resolution
(HR) image from a low-resolution (LR) one, which is an
important technique in image processing [13,26,27,52] and
computer vision [7, 14, 18,45,51]. In the past decades, plen-
tiful SR methods have been proposed [19, 53], and applied
to a wide range of real-world applications [21,47,49, 54].

Among existing studies, the learning-based methods that
learn a mapping between LR and HR image spaces have
achieved the state-of-the-art performance [17,39,43,58,59].
Nonetheless, they have empirically observed that the high-
frequency regions are harder to be super-resolved than the
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Figure 1. The long-tailed pixel distribution in the natural image.
For given a HR image 7%, we take x4 LR version I*® as a
showcase, and utilize Bicubic Interpolation (BI) and MSRRes-
Net [25] (MSRRN) to super-resolve it, i.e., I3F and I'5{% g, Te-
spectively. The top row shows the absolute difference (AD) in the
luminance channel, and the bottom row shows the pixel number at
different AD intervals. From the top row, one could observe that i)
both BI and MSRRN achieve better results in the low- than high-
frequency regions; ii) MSRRN performs significantly better than
BI in the high-frequency regions while slightly better in the low
ones. From the bottom row, one could see that iii) the pixel dis-
tribution w.r.t. the low- and high-frequency region is long-tailed,
i.e., the number of pixels in the low-frequency regions is far more
than that in the high-frequency ones. Clearly, such an imbalanced
pixel distribution necessarily results in the twin fitting problem,
i.e., overfitting majority pixels in the low-frequency region while
underfitting minority pixels in the high-frequency one.

low-frequency ones in the natural image. To alleviate that,
various SR methods have been proposed following the be-
low two paradigms, i.e., developing generalized models
with larger capacities [3 1, 36] or specific models with high-
frequency enhancements [37,48]. The former obtains better
results in both the high- and low-frequency regions via con-
stantly enlarging the capacities, while the latter enhances
the high-frequency regions through specific auxiliary sub-
networks, loss functions, training strategies, efc. Although
the promising results have been obtained, they involve the
following three limitations. First, the large capacity models
take a lot of time and computations in the training and infer-



ring, which is unavailable to mobile scenarios. Second, the
specific models need ingenious designs about the architec-
ture and training strategy, which is difficult to training and
prone to artifacts. Third, they don’t dive into the problem
and give a reasonable explanation, thus alleviate the prob-
lem not in the most cost-effective way.

In this paper, we dive into the problem and explain it
from a machine learning perspective, i.e., the twin fitting
problem caused by the long-tailed pixel distribution in the
natural images. Taking the Fig. 1 as an example, the num-
ber of pixels in the low-frequency region is far more than
that in the high-frequency one, i.e., the long-tailed pixel dis-
tribution. Since majority pixels in the low-frequency region
dominate minority pixels in the high-frequency one, the gra-
dients of SR model are mainly from the former instead of
the latter. As a result, the SR model is optimized to mainly
fit the pixels in the low-frequency region, and thus over-
fitting them while underfitting those in the high-frequency
region, i.e., the twin fitting problem.

Motivated by the above explanation, we reformulate SR
as the long-tailed distribution learning problem. With this
reformulation, the twin fitting problem could be alleviated
during training in a model-agnostic way, and thus applicable
to different SR models. However, although the long-tailed
distribution learning problem has been extensively studied
in high-level vision tasks, there are few works on it in low-
level ones. Therefore, we bridge the gaps of the problem
between in low- and high-level vision ones, and design a
simple and effective solution to verify the feasibility of our
reformulation. To be specific, we design a novel long-tailed
distribution learning method for SR, termed as Focal Pixel
Learning (FPL), which adaptively re-weights the loss con-
tribution of pixels by combining two complementary struc-
ture priors. In this way, the gradients of SR model could be
rebalanced, leading it to achieve better balance on the fitting
of the high- and low-frequency regions.

The contributions of this work are summarized below.

e For the first time, this work dives into the observation
that the high-frequency regions are harder to be super-
resolved than the low-frequency ones, and gives a rea-
sonable explanation, i.e., the long-tailed pixel distribu-
tion and it caused twin fitting problem.

e With our explanation, this work reformulates SR as a
long-tailed distribution learning problem and designs a
novel solution to verify its feasibility, which could be
the first long-tailed distribution learning solution for
SR, as far as we know.

e Extensive analyses and experiments are conducted to
demonstrate the explanation, verify the reformulation,
and validate the solution. The results demonstrate that
our works could consistently improve the performance
of SR models with different complexities.

2. Related Works

Here, we briefly review the related works of image super
resolution and long-tailed distribution learning.

2.1. Image Super Resolution

Although a lot of SR models have been proposed [ 1, 16,

,42], they are advanced along two directions. One is to
develop generalized models with larger capacities. For ex-
ample, SRCNN [9] introduced the convolution neural net-
work into SR for the first time, and outperformed the tra-
ditional methods. RDN [58] introduced the dense connec-
tions to utilize the hierarchical features from all convolu-
tional layers. SwinIR [31] introduced the shifted window-
ing scheme to model the local attention and long-range de-
pendency. ESRT [36] utilized a convolution neural network
to extract deep features first and then used a Transformer
to model the long-range dependency. The other direction
is to develop specific models with high-frequency enhance-
ments. For instance, PCL [48] proposed a contrastive learn-
ing framework to enhance LR images into sharp HR images.
SPSR [37] introduced a gradient map SR network to guide
the high-frequency region recovery in the image SR net-
work. WDST [&] decomposed an image into high- and low-
frequency sub-bands, and separately enhanced them via dif-
ferent subnetworks. SA [44] introduced a heuristic metric
to exploit informative LR-HR patch pairs for training.

Different from them, this work dives into the observa-
tion that the high-frequency regions are harder to be super-
resolved than the low-frequency regions, and explains it
from the twin fitting problem caused by the long-tailed pixel
distribution. Inspired by this explanation, this work refor-
mulates SR as a long-tailed distribution learning problem,
and designs a novel model-agnostic solution. This solution
could endow the SR model with the better recovery capabil-
ity of the high-frequency regions, without introducing extra
model capacities or auxiliary strategies.

2.2. Long-tailed Distribution Learning

In real-world applications, samples typically exhibit a
long-tailed distribution, where a small portion of classes
have massive samples but the others are with only a few
samples. With the unbalanced training data, models would
be biased towards majority classes with massive samples,
leading to poor performance on minority classes that have
limited samples [4, 32, 46]. To address the problem, mas-
sive studies have been conducted in recent years [6,22, 34,

,56], which could be categorized into class re-balancing,
information augmentation and module improvement. Here,
we briefly review the related category of class re-balancing,
and more details could be referred to [57].

Class re-balancing is the main paradigm in the long-
tailed distribution learning, which balances training sam-
ples of different classes through re-sampling, cost-sensitive



learning, and/or logit adjustment. As logit adjustment post-
hoc shifts the logits based on label frequencies, we focus
on re-sampling and cost-sensitive learning which act on the
training process. To be specific, re-sampling usually under-
samples the majority classes and/or over-samples the mi-
nority classes, e.g., SMOTE [5] linearly interpolates sam-
ples for the minority classes, and UNSAM [4 1] learns a data
sampler to discard samples. Besides, cost-sensitive learning
re-balances classes by re-weighting the loss contribution of
different classes during the training. For example, CB [6]
re-weights the loss value to be inverse to the effective num-
ber of samples per class. FL [32] down-weights the loss val-
ues assigned to the majority classes and the well-classified
examples. GHM [28] re-weights the loss values of samples
based on their gradients per iteration.

Although the long-tailed distribution learning has been
extensively studied in high-level vision tasks, such as clas-
sification and detection, few studies are conducted in low-
level ones. Different from the existing works, this work first
reveals the long-tailed pixel distribution in natural images
and the twin fitting problem in SR, and then achieves SR
in a long-tailed distribution learning paradigm. To the best
of our knowledge, this work could be the first study on this
topic for SR.

3. The Proposed Solution

In this section, we first theoretically explain why the SR
models suffer from the twin fitting problem, and then elabo-
rate on how does the proposed solution learn from the long-
tailed pixel distribution and alleviates the problem.

3.1. Twin Fitting Problem in SR

SR models are generally trained through pixel-wise loss
function £, on a large number of natural images. Specifi-
cally, for a given HR image y as well as the LR counterpart
x, the pixel-wise loss function £, is

1 I
E:j2|f($)i—yi|p, (D
i=1

where f(-) denotes the SR model, ¢ and I indicate the pixel
index and number, respectively. With the formula, we could
observe that £, treats all pixels equally, i.e., every pixel, ei-
ther in the high- or low-frequency region, equally contribute
to the overall loss value. However, as depicted in Fig. 1,
the pixels in the natural images show a long-tailed distribu-
tion, i.e., the number of pixels in the low-frequency region
is far more than that in the high-frequency region. For clar-
ity, let M and N denote the pixel number in the low- and
high-frequency region, respectively. Therefore, ¢, in Eq. (1)
could be reformulated as the sum of the loss values in the

two regions, i.e.,
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Obviously, the majority pixels in the low-frequency re-
gion could easily dominate the minority pixels in the high-
frequency region on the contribution of overall loss value.
Therefore, the gradients of SR model are mainly from the
low-frequency regions and be biased toward fitting them.
As a result, SR model would overfit the low-frequency re-
gions while underfitting the high-frequency ones. Here, we
term this competing fitting issue as the twin fitting problem,
which is particularly severe in the limited capacity models.

3.2. Long-tailed Distribution Learning for SR

As the twin fitting problem arises from the long-tailed
pixel distribution, it is highly expected to solve it from the
long-tailed distribution learning perspective, i.e., recasting
SR as a long-tailed distribution learning problem. Although
plentiful methods have been proposed to solve it in high-
level vision tasks, there are few studies in low-level vision
tasks due to the following two obstacles. First, no semantic
class label to indicate a pixel belonging to the high- or low-
frequency region since it depends on the surroundings. Sec-
ond, no specific boundary between high- and low-frequency
regions since the frequencies are distributed continuously.
In other words, it is daunting to conduct long-tailed distribu-
tion learning for low-level vision tasks due to the absence of
discrete and semantic labels for pixels. Therefore, to solve
the twin fitting problem through long-tailed pixel distribu-
tion learning, we should overcome the two obstacles.

3.2.1 Two Structure Priors

To overcome the first obstacle, we introduce two structure
priors to jointly indicate the pixel distribution about the low-
and high-frequency region in a heuristic way.

The structure prior y,, comes from the observation il-
lustrated in Fig. 1, i.e., BI usually achieves better results in
the low- than high-frequency regions. Namely, pixels with
large absolute differences between HR image y and BI im-
age fpr(x) have a high probability of being in the high-
frequency region. Based on the observation, we formulate
a static structure prior as below,

Ysp = Iy_fBI(x)|7 3)

in which the pixels with small values are more likely to be in
the low-frequency region, while the pixels with large values
are more likely to be in the high-frequency region. There-
fore, y,, could be viewed as the sketchy labels for the pixels
in different frequency regions.
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Figure 2. Overview of the proposed FPL derived from Eq. (7).
For a given SR model f(-), FPL endows it with the capacity of
learning from the long-tailed pixel distribution through adaptive
re-sampling and re-weighting.

Real-time fitting degree is significant for distinguishing
pixels in different frequency regions, and solving the twin
fitting problem. Thus, as a remedy to ¥, a learnable struc-
ture prior ¥, is designed based on the observation illus-
trated in Fig. 1, i.e., SR models easily achieve better results
in the low- than high-frequency regions. In other words, the
pixels with large absolute differences between HR image y
and SR image f(z) are more likely to be those not be and
hard to be fitted in the high-frequency region. With this ob-
servation, we formulate a learnable structure prior as below,

Yip = |y — ()], 4

in which the small values indicate the pixels that are easy to
be fitted in the low-frequency regions, while the large values
indicate those hard to be fitted in the high-frequency ones.
Hence, y;,, could be viewed as the subtle labels for pixels la-
beled through the criterion of fitting difficulty. Meanwhile,
y1p could endow the model with the capacity of knowing
itself fitting degree, thus dynamically adjusting the training
process for solving the twin fitting problem.

In summary, we introduce the two structure priors as the
heuristic labels to indicate the pixels (i.e., ysp) as well as
those easy and hard to be fitted (i.e., y;p) in the low- and
high-frequency regions. As a result, the first obstacle could
be overcome.

3.2.2 Focal Pixel Learning

The second obstacle is no specific boundaries among the
different frequencies, and thus the pixels cannot be divided
into either high- or low-frequency ones. To overcome that,
we follow the cost-sensitive learning paradigm, which re-
weights the loss contributions of different classes during the
training. As a result, we transform the structure priors into
soft weights for re-weighting the loss contribution per pixel.

Given the structure priors s, and y;,, we first harmo-
nize them so that they are in a comparable magnitude, i.e.,

z—min(z)

g(z) = () min(D) where z € {ysp, yip}. Further, as
their lower bounds are zero, we introduce the exponential
function to transform them into the non-zero weights, i.e.,
W(z) := exp(g(z)). Meanwhile, two hyper-parameters «,
«y are introduced into W (z), so that the weights are more
flexible and controllable, i.e.,

Wz ,7) = a-exp(y-g(2)). 5)

With the weighting function, the structure priors could be
transformed into the weights, while keeping the relative size
of values, i.e., the large weights correspond to the pixels in
the high-frequency region, while the small weights corre-
spond to those in the low-frequency one. With the weight-
ing matrices, long-tailed distribution learning for SR could
be achieved in a cost-sensitive learning way.

As illustrated in Fig. 1, SR models usually perform re-
markably better in the high-frequency regions while slightly
better in the low-frequency ones than BI. Therefore, we in-
troduce BI into the solution and endow it with a novel con-
notation. Specifically, BI is essentially a re-sampling strat-
egy for long-tailed pixel distribution learning, which under-
samples the pixels in the low-frequency region, i.e.,

=y — fer(x). (6)

In other words, the number of pixels in the low-frequency
region that need to be fitted is decreased and thus allowing
SR models to fit the residual pixels that on a less extremely
long-tailed distribution.

Combining the two strategies, we formulate a long-tailed
distribution learning solution for SR, termed as Focal Pixel
Learning (FPL), i.e.,

Li= W(yszﬂ O‘szﬂylep)i X W(!/l(ﬁ alpv’Ylp)i X |f(1')z - gi|p7 (7)

and the overall loss value is £ = } Zfil L;. Intuitively,
FPL introduces BI to under-sample the majority pixels,
while introducing two structure priors and a weighting func-
tion to re-balance the pixel-wise contribution in Eq. (2). As
a result, SR models focus more on learning from the pix-
els and those hard to be fitted in the high-frequency regions.
Note that as y;,, involves the current fitting degree, the HR
image y in Eq. (4) should be substituted with 3. Besides,
the gradients are blocked in the weighting function.

4. Experiments

In this section, we devote to verifying the feasibility of
our rethinkings, i.e., achieving SR in a long-tailed distri-
bution learning paradigm, so that the twin fitting problem
could be alleviated. In the following, we will detail the ex-
perimental settings first, and then assess FPL on four CNN-
and one Transformer-based methods about three SR tasks
and six SR datasets. Finally, we will conduct some anal-
ysis experiments to demonstrate the effectiveness of FPL.



Due to the space limitation, we present more experiments
in supplementary material.

4.1. Experimental Settings

We use DIV2K [1] as the training dataset which con-
tains 800 images of 2K resolution. Following ClassSR [24],
we densely crop 159M LR and HR image pairs with the
sizes of i) 32 x 32 and 128 x 128 for 4x SR, and ii)
32 x 32 and 64 x 64 for 2x SR, respectively. For evalu-
ations, six widely used datasets are employed, i.e., SetS [3],
Set14 [50], BSD100 [38], Mangal09 [12], Urban100 [20],
and Test2K [24]. To measure the performance, two metrics
of PSNR and SSIM in RGB color space are used.

As FPL is compatible with existing SR models, we in-
troduce the models of FSRCNN [10] (tiny, 25K/468M "),
CARN [2] (small, 295K/1.16G), SRResNet [25] (mid-
dle, 1.5M/4.56G) and MSRN [29] (large, 6.1M/13.4G),
which are representative CNN models at different complex-
ities, and SwinIR [31] (lightweight, 1.2M/3.4G) which is
a Transformer model. All models are implemented in Py-
Torch [40], and the experiments are conducted on Ubuntu
18.04 with GeForce RTX TITAN GPUs.

We train CARN, SRResNet, and MSRN with the itera-
tions of 1000K, FSRCNN and SwinIR with that of 500k,
based on the batch size 16 and the patch size 32 for LR im-
ages. Meanwhile, the images are augmented by flipping and
rotation during the training. The initial learning rate is set
to le-3 for FSRCNN and CARN, and 2e-4 for SRResNet,
MSRN, and SwinlIR. To optimize the models, we adopt the
Adam [23] optimizer with the default settings, as well as
the cosine annealing learning strategy [35] with the mini-
mum learning rate of le-7. For a better reproducibility, we
do not exhaustively tune the models on FPL. Instead, we fix
sy = 0.5, 7 = 1, ayp = 1, and vy, = 1 based on FSR-
CNN throughout the experiments, regardless the differences
in models, datasets, SR tasks, etc.

4.2. Comparison Experiments

We first extend the models with our FPL to obtain the
variants, and then respectively train and evaluate them and
their variants using the same settings on the six datasets and
the three SR tasks.

Comparisons on 4 x SR task. Tab. | shows that “+FPL”
consistently improves the performance, where the small ca-
pacity models obtain significant improvements. To be spe-
cific, FPL boosts FSRCNN with the PSNR/SSIM gains of
0.63dB/0.0127 on the Mangal09, and CARN with that of
0.24dB/0.0098 on the Urban100. As model capacity grows,
the performance improvements are less significant but still
attractive. For example, the PSNR/SSIM gains of SRRes-
Net are 0.21dB/0.0082 on the Urban100. With such an im-
provement, SRResNet+FPL (1.5M/4.56G, the middle size)

The FLOPs on 32 x 32 sub-image.

outperforms MSRN (6.1M/13.4G, the large size model) by
0.07dB/0.0033 in PSNR/SSIM. Analogously, MSRN+FPL
outperforms SwinIR by 0.05dB/0.0034 on the Urban100.
There are two reasons that affect the performance gains.
First, larger capacity models fit the pixels better both in the
low- and high-frequency regions, and thus less suffer from
the long-tailed distribution. Second, higher resolution im-
ages have a higher proportion of low-frequency regions, and
thus less benefit from alleviating the twin fitting problem.

Fig. 3 shows the qualitative and quantitative results, from
which one could see that FPL enables the models to produce
clearer structures, richer details, and higher PSNR/SSIM
values. Some areas are highlighted by color rectangles, and
more results could be referred to supplementary material.

Comparisons on 2x SR task. The quantitative results
are shown in Tab. 2, which demonstrate that the FPL im-
proves the performance of the SR models in most cases.
From the table, one could see that FPL boosts FSRCNN
with the gains from 0.16dB/0.0012 to 0.58dB/0.0089, and
CARN with that from 0.14dB/0.0008 to 0.49dB/0.0063 in
PSNR/SSIM on test datasets. Meanwhile, SRResNet+FPL
obtains 0.14dB~0.57dB gains in PSNR, while MSRN+FPL
and SwinIR+FPL achieve PSNR gains at most 0.11dB and
0.09dB, respectively.

Comparisons on 4x SR with multiple degradations.
We introduce multiple degradations including downsam-
pling, blurring, and noise into 4x SR task, i.e.,

xz(y\Ls)@k"i_na (8

where | is the s scale bicubic downsampler, & is the blur
kernel, and n is the additive white Gaussian noise. For bet-
ter reproducibility, we fix the blur kernel & with the kernel
size of 3 x 3 and the kernel standard deviation of 5, and the
noise n with the noise level of 5. The quantitative results are
shown in Tab. 3, from which one could see that FPL still im-
proves the performance of the SR models, e.g., FSRCNN,
CARN, SRResNet, and MSRN achieve PSNR/SSIM gains
at most 0.29dB/0.0116, 0.22dB/0.0089, 0.09dB/0.0049, and
0.05dB/0.0043, respectively.

4.3. Analysis Experiments

Effectiveness on State-of-the-Art Lightweight Model.
The comparison experiments have shown the effects of FPL
on different capacity models. As a supplementary, we con-
duct the evaluations on BSRN [30], which is the first place
in the model complexity track of NTIRE 2022 Efficient SR
Challenge. The results are shown in Tab. 4, which shows the
attractive performance improvements of BSRN from FPL.

Ablation Studies and Parameter Analyses. To investi-
gate the parameters in the weighting functions, we change
one of them while remaining the others unchanged. Specifi-
cally, we first change y,,, and 7y, with 0, 1, 2, where v, = 0



Table 1. Quantitative results on 4x SR task. “+FPL” indicates the corresponding model trained with FPL on the same settings, and “Gains”
denotes the performance improvement from it.

Method Set5 Set14 BSD100 Mangal09 Urban100 Test2K
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
FSRCNN 28.71 0.8500 25.84 0.7389 25.58 0.7122 2578 0.8346 2299 0.7184 25.64 0.7567
+FPL 29.00 0.8565 26.01 0.7446 2570 0.7178 26.41 0.8473 23.26 0.7313 25.72 0.7616
Gains 0.29  0.0065 0.17 0.0057 0.12 0.0056 0.63 0.0127 027 0.0129 0.08 0.0049
CARN 2994 0.8737 26.61 0.7605 26.07 0.7296 28.00 0.8787 24.12 0.7639 26.03 0.7734
+FPL 30.11 0.8765 26.69 0.7641 26.16 0.7338 28.33 0.8836 24.36 0.7737 26.10 0.7779
Gains 0.17 0.0028 0.08 0.0036 0.09 0.0042 0.33 0.0049 024 0.0098 0.07 0.0045
SRResNet 30.13 0.8771 26.75 0.7648 26.21 0.7342 28.44 0.8844 2447 0.7772 26.12 0.7781
+FPL 30.27 0.8795 26.85 0.7677 2626 0.7376 28.63 0.8874 24.68 0.7854 2620 0.7819
Gains 0.14  0.0024 0.10 0.0029 0.05 0.0034 0.19 0.0030 0.21 0.0082  0.08  0.0038
MSRN 30.24 0.8786 26.84 0.7672 26.25 0.7361 28.69 0.8875 24.61 0.7821 26.23 0.7811
+FPL 30.36  0.8800 26.89 0.7695 26.28 0.7385 28.81 0.8895 24.75 0.7877 26.25 0.7839
Gains 0.12  0.0014 0.05 0.0023 0.03 0.0024 0.12 0.0020 0.14 0.0056 0.02 0.0028
SwinlR 30.34 0.8795 26.87 0.7670 2627 0.7365 28.76 0.8898 24.70 0.7843 2624 0.7821
+FPL 30.39 0.8805 2691 0.7688 26.29 0.7393 28.83 0.8908 24.78 0.7880 26.26 0.7847
Gains 0.05 0.0010 0.04 0.0018 0.02 0.0028 0.07 0.0010 0.08 0.0037 0.02 0.0026

Table 2. Quantitative results on 2x SR task. “+FPL” indicates the corresponding model trained with FPL on the same settings, and “Gains”
denotes the performance improvement from it.

Method Set5 Setl4 BSD100 Mangal09 Urban100 Test2K
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
FSRCNN 3474 0.9456 30.56 0.8944 30.01 0.8909 34.13 09608 2792 0.8936 3021 09158
+FPL 3497 09468 30.74 0.8967 3021 0.8948 3447 09621 28.50 0.9025 30.37 09184
Gains 0.23 0.0012 0.18 0.0023 0.20 0.0039 034 0.0013 058 0.0089 0.16 0.0026
CARN 3530 09489 31.14 09007 3047 0.8977 35.19 09655 29.34 09127 30.74 0.9235
+FPL 3548 09497 3130 09031 30.61 09006 3549 09669 29.83 0.9190 30.93 0.9263
Gains 0.18 0.0008 0.16 0.0024 0.14 0.0029 030 0.0014 049 0.0063 0.19 0.0028
SRResNet 3548 0.9496 31.26 09018 30.51 0.8994 3552 09668 29.71 09171 30.50 0.9246
+FPL 35.62 09503 3148 09041 30.74 09021 3578 09680 30.28 0.9240 30.99 0.9239
Gains 0.14  0.0007 022 0.0023 023 0.0027 0.26 0.0012 0.57 0.0069 049 -0.0007
MSRN 35,66 09506 31.55 09049 30.75 0.9012 3587 0.9682 30.36 09240 31.24 0.9294
+FPL 35.67 09507 31.62 09065 30.75 0.9023 3590 0.9683 3047 09259 31.23 0.9302
Gains 0.01 0.0001 0.07 0.0016 000 0.0011 0.03 0.0001 0.11 0.0019 -0.01 0.0008
SwinlR 35,70 09507 31.55 09050 30.75 0.9010 3594 0.9688 30.37 09242 31.32 0.9304
+FPL 35773 09509 31.59 09059 30.75 0.9022 3593 0.9688 3046 09257 31.32 09312
Gains 0.03 0.0002 0.04 0.0009 0.00 0.0012 -0.01 0.00 0.09 0.0015 0.00 0.0008

or v, = 0 denotes to remove one of the weighting func-
tion, and v, = 0,7, = 0 disables both of the weighting
functions, while BI is remained for under-sampling. The
results are shown in Fig. 4, from which one could see that
the indispensable roles of them. Note that as the BI under-
sampling revises the pixel distribution to a less extremely
long-tailed one, it obtains better performance gains than the
priors which balance the fitting degree of the model for im-
provements. But generally, the best performance is obtained
by integrating them together. Second, as ), and «;;, should
be greater than zero, we change them with 0.1, 0.5, 1, 2.

As shown in Fig. 4, there is no very obvious performance
changes among different parameters’ settings. Overall, al-
though the parameters affect the performance, FPL could
achieve the consistent improvements.

Weighting matrix visualizations. We visualize weight-
ing matrices from the two structure priors and their element-
wise product for observing the attentions on HR images. As
shown in Fig. 5, the weighting matrix (b) from the static
structure prior has large values in the high-frequency re-
gions, while that (c) from the learnable structure prior has
large values on the hard pixels in high-frequency regions.



Table 3. Quantitative results on 4x SR task with multiple degradations. “+FPL” indicates the corresponding model trained with FPL on
the same settings, and “Gains” denotes the performance improvement from it.

Method

Set5 Setl4 BSD100 Mangal09 Urban100 Test2K

PSNR SSIM PSNR SSIM PSNR

SSIM PSNR SSIM PSNR SSIM PSNR SSIM

FSRCNN 2473 0.6859 23.13 0.5809 23.45
+FPL 2491 0.6957 2323 0.5869 23.54
Gains 0.18  0.0098 0.10 0.0060  0.09

0.5598 22.08 0.6861 20.77 0.5640 23.55 0.6129
0.5658 2237 0.6977 20.89 0.5737 23.57 0.6140
0.0060 0.29 0.0116 0.12 0.0097 0.02 0.0011

CARN 25.69 0.7330 2391 0.6188 23.90
+FPL 2580 0.7381 2399 0.6236 23.96
Gains 0.11  0.0051  0.08 0.0048  0.06

0.5865 23.84 0.7588 21.60 0.6210 23.64 0.6309
05912 24.06 0.7668 21.72 0.6299 23.63 0.6338
0.0047 022 0.0080 0.12 0.0089 -0.01  0.0029

SRResNet 25.86 0.7403 24.08 0.6256 23.99
+FPL 2595 0.7431 24.08 0.6276 24.02
Gains 0.09 0.0028 0.00 0.0020 0.03

0.5918 2429 0.7722 21.89 0.6382 23.61 0.6320
0.5952 2438 0.7760 21.92 0.6431 23.52 0.6337
0.0034  0.09 0.0038 0.03 0.0049 -0.09 0.0017

MSRN 26.01 0.7459 24.09 0.6266 24.02
+FPL 26.05 0.7480 24.10 0.6291 24.03
Gains 0.04 0.0021 0.01 0.0025 0.01

0.5932 2440 0.7757 2195 0.6412 2359 0.6324
0.5958 2445 0.7782 2197 0.6455 23.48 0.6331
0.0026  0.05 0.0025 0.02 0.0043 -0.11 0.0007

FSRCNN CARN SRResNet

24.55/0.7928
24.83/0.8022

)
23.54/0.7463
23.76/0.7571

24.31/0.7819
24.54/0.7921

FSRCNN+FPL

CARN+FPL

MSRN SwinlR

d)
24.52/0.7947 24.96/0.8040
24.75/0.8019 25.08/0.8079

SRResNet+FPL ~ MSRN+FPL SwinlR+FPL

Figure 3. Qualitative and quantitative (PSNR/SSIM) results on 4 x SR task.

As a result, their element-wise product (d) integrates the
two weighting matrices to down-weight the pixels in the
low-frequency regions, while up-weighting the pixels in the
high-frequency regions, in which the hard pixels are with

larger weight values than the easy ones. For example, the
edges of the “hat” are high-frequency regions according to
the weighting matrix (b), and relatively easy to be super-
resolved in terms of the weighting matrix (c), thus they are



Table 4. Quantitative results of BSRN [30] on 4x SR task.

Method Set5 Urban100
PSNR SSIM PSNR SSIM
BSRN 32.35 0.8966 2627 0.7908
+FPL 32.50 0.8972 26.34 0.7942
Gains 0.15 0.0006 0.07 0.0034
0.70
o8 [ I —
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Figure 4. Ablation studies and parameter analyses on Mangal09.
The left column is the results of changing s, and v;;,, and the right
column is the results of changing avs;, and o, where PSNR/SSIM
gain denotes the performance improvements over FSRCNN.

(2) GT images (b) Weights from static structure prior (<) Weights from learnable structure prior ~ (d) Weights of element-wise products

Figure 5. The weighting matrices from the two structure priors
and their element-wise product, which show significant attention
on the pixels in the high-frequency regions.

assigned with eclectic weight values in the overall weight-
ing matrix (d).

Attribution Analyses. To investigate the effects of FPL
on SR models, we preform attribution analyses on FSR-
CNN and FSRCNN+FPL through the local attribution map
(LAM) and the diffusion index (DI) proposed by [15]. In
brief, LAM illustrates the contribution of each pixel in the
LR image to the SR result of a given patch. DI is a sta-
tistical dispersion measure, and a smaller value represents

fewer pixels significantly contribute to the SR result, while
a higher one means more pixels significantly contribute to
that. The attribution results are shown in Fig. 6, from which
one could see that, i) FSRCNN and FSRCNN+FPL have
the same receptive fields; ii) comparing with FSRCNN, FS-
RCNN+FPL involves more pixels which produce signifi-
cant contributions, and thus obtaining a higher DI value;
iii) the involved pixels mainly belong to the high-frequency
region, which are distributed along the edges and textures.
According to the observations, we could conclude that FPL
boosts SR models by making them more effectively exploit
the high-frequency information within the receptive fields,
i.e., SR models fit the high-frequency regions better. Such
a conclusion demonstrates the effectiveness of FPL on alle-
viating the twin fitting problem.

Figure 6. Attribution results with diffusion index (DI) w.r.t. FS-
RCNN (top) and FSRCNN+FPL (bottom). From left to right re-
spectively are HR images, receptive fields, attribution results, at-
tribution pixels, and SR results. A higher DI represents that more
pixels significantly contribute to the SR result of the given patch.

5. Conclusion

In this work, we propose a novel understanding, i.e., the
twin fitting problem arises from the long-tailed pixel dis-
tribution, to explain why the high-frequency regions are
harder to be super-resolved than the low-frequency ones.
Inspired by the explanation, we first reformulate SR as a
long-tailed distribution learning problem, and design a sim-
ple and effective solution by introducing two structure pri-
ors and an under-sampling strategy. Such a reformulation
and solution enjoy the advantages of high interpretability
and model agnostic, and the extensive experiments have
demonstrated the superiority of them.
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