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Abstract

In this paper, we study a challenging problem in image
restoration, namely, how to develop an all-in-one method
that could recover images from a variety of unknown cor-
ruption types and levels. To this end, we propose an All-in-
one Image Restoration Network (AirNet) consisting of two
neural modules, named Contrastive-Based Degraded En-
coder (CBDE) and Degradation-Guided Restoration Net-
work (DGRN). The major advantages of AirNet are two-
fold. First, it is an all-in-one solution which could recover
various degraded images in one network. Second, AirNet is
free from the prior of the corruption types and levels, which
just uses the observed corrupted image to perform infer-
ence. These two advantages enable AirNet to enjoy bet-
ter flexibility and higher economy in real world scenarios
wherein the priors on the corruptions are hard to know and
the degradation will change with space and time. Exten-
sive experimental results show the proposed method outper-
forms 17 image restoration baselines on four challenging
datasets. The code is available at https://github.
com/XLearning—-SCU/2022-CVPR-AirNet.

1. Introduction

Single image restoration aims to generate a visually
pleasant high-quality image from a given degraded corre-
spondence, e.g., noisy, rainy or hazy image. During past
years, image restoration has been widely used in a number
of real world applications, ranging from autopilot to medi-
cal imaging and surveillance.

Although promising results have been achieved in a
specific area, such as denosing [5, 27, 40, 53-55], deblur-
ring [12, 32-34], deraining [10, 11, 17,46, 50, 52] and de-
hazing [1,7,9,15,19,35,37,38], image restoration has en-
countered the following obstacles in practice. On the one
hand, it is necessary to know the correct corruption (i.e.,
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Figure 1. Illustrations of our basic idea. As shown, most of the
existing multiple degradations methods handle each corruption by
sending the input into a specifically designed head and using the
output of the corresponding tail. Thus, they require the corruption
information in advance to specify the corrected head and tail. Dif-
ferently, our all-in-one image restoration network (AirNet) is free
from the prior of corruption types and levels, thus enjoying better
flexibility and higher economy in real world scenarios.

degradation) for selecting a competitive model because al-
most all existing approaches could handle a specific degra-
dation only. Once the degradation type even corruption ratio
changed, the model would achieve undesirable performance
due to the inconsistency between the real case and the prior
adopted for model construction or training. On the other
hand, the degradation usually changes in complex environ-
ment, e.g., self-driving cars may suffer from the rainy and
hazy weather consecutively even simultaneously. In sum-
mary, it is highly expected to develop an all-in-one method
that is able to recover images from a variety of unknown'
corruption types and levels, as shown in Figure 1. To the
best of our knowledge, such a unspecific image restoration

INoticed, in this paper, the “unknown” refers to unspecific rather than
unseen corruptions, and the “multiple degradations” refers to that a given
image only contain a degradation but the data set will contain multiple
degradations.
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problem has been barely touched so far.

To tackle the aforementioned problem, we propose All-
in-one Image Restoration Network (AirNet) which consists
of two modules. To be specific, Contrastive-Based De-
graded Encoder (CBDE) is designed to learn the degra-
dation representation by leveraging the consistency of the
images with the same degradation and the inconsistency
existing into different degradations. Under the guid-
ance of the degradation representations learned by CBDE,
Degradation-Guided Restoration Network (DGRN) aims to
restore the images with various degradations. Thanks to
the corporation of CBDE and DGRN, AirNet enjoys two
highly expected merits, i.e., 1) it provides an all-in-one so-
lution to recover the images with different corruption types
and ratios; ii) it is free from the prior of the corruption type
and ratio. Notably, the referred all-in-one solution is differ-
ent from existing so-called unified image restoration meth-
ods [3, 8,23] in given aspects. On the one hand, the meth-
ods [3, 8, 23] have to specify the corruption type and ra-
tio, whereas our method does not. On the other hand, they
usually treat multiple degradations as a multi-task learning
problem with multiple input and output heads, where each
input and output head corresponds to a predetermined cor-
ruption with a given corruption ratio. In contrast, AirNet is
a single pass network which does not differentiate different
corruption types and ratios, thus enjoying better flexibility
and higher economy.

To summarize, the contribution and novelty of this study
are as below:

o As far as we know, AirNet could be one of the first
methods to recover images from multiple corruptions
in an all-in-one fashion. As our method does not re-
quire any degradation information for restoration in
advance, it might be closer to the real world scenario.

e AirNet works in a dual manner, which contrastively
learns the degradation representation from the ob-
served images and then uses the learned degradation
representation to restore the clean image. It should
be pointed out that the success of contrastive learning
heavily relies on the construction of positive and neg-
ative pairs. In this paper, we show a novel method that
is effective to capture the inherited characteristics of
multi-degradations.

e Without loss of generalizability, we conduct extensive
experiments to verify the effectiveness of AirNet in de-
noising, deraining and dehazing, comparing with 17
baselines.

2. Related Works

In this section, we will briefly review some recent devel-
opments in the problem and the method concerned in this

paper, namely, image restoration and contrastive learning.

2.1. Image Restoration

According to the focus of this paper, the existing image
restoration methods could be classified into two families,
i.e., image restoration for single (IRSD) and multiple degra-
dations (IRMD).

Image Restoration for Single Degradation: IRSD
aims to recover a clean image from the degraded obser-
vation which is corrupted by only a specific degradation
type with a fixed corruption ratio. For instance, as one of
pioneering deep denoising methods, DnCNN [53] cannot
handle the multi-degradation case even be failed when the
noise ratio is unseen during training. Other image restora-
tion tasks have also faced the similar challenge, such as de-
bluring [2,12,29,32-34,36], deraining [ 10, 17,24,42,46,49,

,52], and dehazing [ 1, 15,20,25,28,35,37,38]. In recent,
some works [13,26,39,51] show certain generalizability to
different degradations. However, they need to train different
models for different degradations, which are not all-in-one
solutions as expected in practice.

Image Restoration for Multiple Degradations: Re-
cently, there are some works [3, 23] shift their attention
to IRMD by adopting a multi-input and -output network
structure. For example, Li et al. [23] proposed an all-
in-one model to handle multiple bad weather degradations
(e.g. rain, fog and snow) and each degradation is specif-
ically tackled by an encoder. Chen et al. [3] proposed a
transformer-based image restoration method which handles
multiple-degradations by using an architecture of multi-
heads and multi-tails. The most similar method with our
approach may be [8]. However, the method still needs to
know some priors of the input (e.g., noise ratio and JPEG
quality) for parametrizing the network in a meta-learning
manner. To summarize, although the above methods have
stepped towards IRMD, they still require the degradation
information in advance so that the input could be sent into
the corrected head or the meta information could be gener-
ated.

2.2. Contrastive Learning

Contrastive learning [4, 14,4 1] is the state-of-the-art un-
supervised representation learning method, which aims at
maximizing the similarity between positive pairs while min-
imizing that of negative pairs, where the positive and neg-
ative pairs are obtained through data augmentations. In
recent, some studies have shown the effectiveness of con-
trastive learning in image restorations [43,47]. Notably, al-
though DASR [43] and our AirNet both leverage contrastive
learning to capture the degradation information, they are re-
markably different in given aspects. First, the definition of
positive and negative pairs is different. In fact, the success
of contrastive learning heavily relies on the construction of
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Figure 2. Architecture of the proposed AirNet. (a) All-in-one Image Restoration Network (AirNet); (b) Contrastive-Based Degradation
Encoder (CBDE); (c) Degradation-Guided Groups (DGG); (d)Degradation-Guided Module (DGM).

positive and negative pairs which is thus the focus of a num-
ber of works [4]. Second, the task is different. In brief,
DASR is specifically designed for image super-resolution,
whereas AirNet is proposed to handle multi-degradation in
all-in-one manner. Third, despite the difference in the task,
DASR needs specifying the image super-resolution scale,
whereas AirNet does not need any degradation parameters.

3. The Proposed Method

In this section, we elaborate on the proposed method
which consists of Contrastive-Based Degradation Encoder
(CBDE, fc(+)) and Degradation-Guided Restoration Net-
work (DGRN, fp(-)) as shown in Figure 2.

For a given degraded image x, AirNet first feeds it into
fe(+) to learn the latent degradation representation z =
fe(z). Then, x and z are further passed through fp(-) to
obtain the recovered image y' = fp(z, z). Without loss of
generalizability, we consider three popular degradations as
a showcase in this paper, namely, noise, haze, and rain. In
the following, we will first introduce the overall loss func-
tion and then elaborate on the two subnetworks with the
corresponding loss.

3.1. The Objective Function

To remove the corruption from the observed image, we
propose the following objective function:

L= ERec + Ecla (1)
where Lg.. is the reconstruction loss between the ground-
truth i and the recovered clean image 3’. The second loss
L is the contrastive loss for CBDE.

For a given degraded image x, Lg.. aims to minimize
the L;-distance between y and the recovered clean image

y' = f(x) through AirNet. Mathematically,

1 X
Lhee = 7 2_; | () = il @
where 1" is the number of z’s pixel, and 7 is the index of the
pixel.

Different from Lpge., L is the specific loss of CBDE,
which aims to learn representations for different degrada-
tions while preserving their possible difference. More de-
tails will be presented in Section 3.2.

3.2. Contrastive-Based Degradation Encoder

The contrastive-based degradation encoder aims to ex-
tract the latent degradation representation z from the input
x. To enable AirNet tackle multiple unspecific degrada-
tions, z is expected to enjoy the following two properties.

First, z should be adaptive to different degradations. In
other words, for the inputs with different degradations, the
corresponding z should be different even though the image
contents are the same. To this end, we leverage contrastive
learning to learn z by maximizing the consistency of two
inputs with the same degradation (i.e., positive samples),
while minimizing the consistency between different degra-
dations (i.e., negative samples). To be specific, for a degra-
dation representation g, k* and k; are the corresponding
positive and negative counterpart, respectively. Then, L.
could be reformulated as,

exp(q- kT /1)
Sisgeaplq-k; /7)

where 7 is a temperature hyper-parameter per [14, 48] and
K denotes the number of negative samples.

In details, for a given input x, we randomly crop two
patches from x, named x4 and x4+. As the degradations in
the same image should be consistent, we treat x, and xj,+ as

Lo =—log 3)



positive pairs. On the contrary, the patches from other im-
ages are treated as negative - w.r.t. z,. With the obtained
pairs, we pass them through CBDE and get the correspond-
ing intermediate representation vy, vg+ and vg- which are
further fed into a two-layer MLP to get ¢, k™ and k~. To
learn a degradation space wherein the discrimination of dif-
ferent degradations is preserved, Eq. 3 is used.

Thanks to our contrastive learning based solution, the
learned degradation representation embraces the follow-
ing advantage. To be exact, it does not rely a mathe-
matical model that explicitly defines the relationship be-
tween the corrupted and clean images as existing meth-
ods [1,37]. Therefore, it avoids the knowledge on such
a prior and its performance is irrelevant with the exact
definition. Especially, our method is more competitive
when the relationship is always unknown or inexact due
to mixed multiple degradations or the degradation comes
from nature, e.g., rain and haze. On the other hand, our
method unifies different degradations into the same sub-
space while preserving their difference. In contrast, the
existing single/multi-degradation methods learn represen-
tations for different degradations from different subspaces,
thus losing the comparability and relationship of degrada-
tions. For example, the Gaussian noise with corruption rate
of 0.1 and 0.2 should be close in the latent space, comparing
with the haze corruptions. Clearly, our contrastive degra-
dation representation could own such a property which is
crucial to handle the data with multiple degradations.

Second, z should preserve as much as possible space
structure to favor image restoration. To this end, we adopt
the output of the first instead of last layer of CBDE as z. In
other words, z is a tensor instead of vector and thus could
preserve the contextual information. In addition, as z is with
the same dimension of the input and the outputs of interme-
diate layers, it is flexible to concat with other features and
compatible to existing neural networks such as DCN [6] and
SFT [44].

3.3. Degradation-Guided Restoration Network

With z learned by the CBDE, DGRN is used to restore
the clean image from the input with unknown degradation.
As shown in Fig. 2, DGRN builds up by five Degradation-
Guided Groups (DGG) each of which further consists of
five Degradation-Guided Blocks (DGB). Within each DGB,
two Degradation-Guided Modules (DGM) are adopted to
restore clean images under the guidance of z.

As elaborated above, DGM is the basic module of
DGRN, which consists of a Deformable Convolution
(DCN) layer and Spatial Feature Transform (SFT) layer.

Mathematically,
m,b,g _ xm,b,g m—1,b,g
Fpéir = (I)DGM(F ) Z)
_ &M:b,g mm—1,b,g m,b,g r rm—1,b,g
=Qpon(F z) + @gpy (F 12),

“)

where ®'2:9 i the m-th DGM w.r.t. the b-th DGB of the g-
th DGG, and F™~1:%9 denotes the output of the (m — 1)-th
DGM w.r.t. b-th DGB of the g-th DGG. ®pcon and ®gpr
are the DCN and SFT layer, respectively.

DGM is designed to achieve the following two goals. On
the one hand, as different degradations should have different
receptive fields, it is highly expected that the model could be
adaptive to different degradations. To this end, DGM em-
ploys the deformable convolution (DCN) [56] which could
dynamically adjust the receptive field based on the modu-
lating offsets and masks. To be specific, given a deformable
convolution kernel of K sampling locations, let w; and
pr € {(-1,-1),(-=1,0),---,(1,1)} denote the weight
and the pre-defined offsets for the k-th location, then the
DCN layer used in DGM as defined by:

K
REG(ETTI2) = > wie F509 (ptprt+-Apy)-Amy,

k=1

®)
where F™~1:%:9(p) denotes the features at location p from
the feature maps F~ %9 Ap,. and Amy, are the learnable
offset and modulation scalar for location k, respectively. In
our implementations, AirNet learns Ap; and Amy, using a
convolution layer conv(-) whose input is the concatenation
of F™~1%9 and 2. Namely,

(Apg, Amy,) = conv(concat(F™ 109 2)),  (6)

where concat(-) is the concatenation operator.

On the other hand, as different degraded images have dif-
ferent latent distributions, the proposed model is expected to
narrow the distribution gap for stronger multi-degradations
restoration capability. To this end, DGM adopts SFT [44]
as a component to adjust the distributions of F' based on z,
ie.,

Fgpp? = g (Fm109)2). (7

In details, the SFT layer aims to learn a mapping func-
tion M that outputs a modulation parameters (-y and ) for a
given z. Then, SFT conducts affine transformation by scal-
ing and shifting feature F~1:%9 with (y and ). Mathe-
matically,

FIebs — b9 (Fm=1b0|y g) = yo F 10948, (8)

where ©® denotes the element-wise multiplication, and
(v,8) = M(z). In our experiments, we implement M
using two convolution layers.



Table 1. Quantitative results of image denoising on the BSD68 and Urban100 datasets. The best results are shown in boldface.

Method BSD68 Urban100
=15 o=25 o =250 oc=15 o=25 o =250

CBM3D [5] 33.50/0.9215 30.69/0.8672 27.36/0.7626 | 33.93/0.9408 31.36/0.9092 27.93/0.8404
DnCNN [53] | 33.89/0.9290 31.23/0.8830 27.92/0.7896 | 32.98/0.9314 30.81/0.9015 27.59/0.8331
IRCNN [54] 33.87/0.9285 31.18/0.8824 27.88/0.7898 | 27.59/0.8331 31.20/0.9088 27.70/0.8396
FFDNet [55] | 33.87/0.9290 31.21/0.8821 27.96/0.7887 | 33.83/0.9418 31.40/0.9120 28.05/0.8476
BRDNet [40] | 34.10/0.9291 31.43/0.8847 28.16/0.7942 | 34.42/0.9462 31.99/0.9194 28.56/0.8577
AirNet 34.14/0.9356  31.48/0.8928 28.23/0.8057 | 34.40/0.9487 32.10/0.9240 28.88/0.8702

Input CBM3D DnCNN IRCNN

FFDNet BRDNet A1rNet

Figure 3. Comparisons with the SOTA denoising methods on the BSD68 database. Some areas are highlighted in colored rectangles and

zooming-in is recommended for a better visualization and comparisons.

4. Experiments

In this section, we evaluate the proposed method on four
widely-used datasets by comparing with 17 baselines. In
the following, we will first introduce the experimental set-
ting and then show the qualitative and quantitative results on
benchmarks. Finally, we will conduct some ablation studies
to verify the effectiveness of our method.

4.1. Experimental Settings

In this section, we introduce the details of the used
datasets, baselines, evaluation metrics, and implementa-
tions details.

Datasets: In our experiments, we use the following
six datasets for evaluations, i.e., BSD400, BSD68 [31],
WED [30], and Urban100 for denoising; Rainl100L [49]
for deraining; and RESIDE [22] for dehazing. To be spe-
cific, BSD400 consists of 400 clean natural images and
BSD68 includes 68 natural images. WED contains 4,744
natural images collected from Internet, and Urban100 has
100 clean images. For image denoising, we use the com-
bination of BSD400 and WED as training set, and that of
BSD68 and Urban100 as testing sets like [55]. By follow-

ing [40,53-55], the noisy images are generated by manually
adding white Gaussian noises to the clean images with three
corruption levels, i.e., 0 = 15,25, 50. For image deraining,
we conduct experiments on Rain100L which consists of 200
rainy-clean training pairs and 100 testing image pairs. For
image dehazing, we conduct experiments on the RESIDE
dataset [22] consisting of Outdoor Training Set (OTS) and
Synthetic Objective Testing Set (SOTS) which are used for
training and testing, respectively. In brief, OTS consists of
72,135 outdoor hazy-clean image pairs and SOTS contains
500 outdoor hazy-clean image pairs.

Baselines: For comprehensive comparisons, we com-
pare our method with five denoising methods, five derain-
ing methods, five dehazing methods, one image restoration
method and one IRMD method. To be specific, the de-
noising baselines contain CBM3D [5], DnCNN [53], IR-
CNN [54], FFDNet [55] and BRDNet [40]. the derain-
ing baselines are DIDMDN [52], UMRL [50], SIRR [46],
MSPEN [17], and LPNet [ 1]. The dehazing baselines are
DehazeNet [1], MSCNN [37], AOD-Net [21], EPDN [35]
and FDGAN [7]. The image restoration baseline is MPR-
Net [51]. The IRMD baseline is the Decouple Learning
(DL) [8]. To comprehensive demonstrate the effectiveness



Table 2. Quantitative results of image deraining on the Rain100L dataset. The best results are shown in boldface.

Metrics ’ DIDMDN [52] UMRL [50] SIRR [46] MSPEN[17] LPNet[!l] AirNet
PSNR 23.79 32.39 32.37 33.50 33.61 34.90
SSIM 0.7731 0.9210 0.9258 0.9480 0.9583 0.9660
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Figure 4. Comparisons of the SOTA derain methods on the Rain100L database. Some areas are highlighted in colored rectangles and

zooming-in is recommended for a better visualization and comparisons.

Table 3. Quantitative results of image dehazing on the SOTS dataset. The best results are shown in boldface.

Metrics | DehazeNet[I] MSCNN [37] AODNet[21] EPDN[35] FDGAN[7] AirNet
PSNR 22.46 22.06 20.29 22.57 23.15 23.18
SSIM 0.8514 0.9078 0.8765 0.8630 0.9207  0.9000

of our method, two different settings are examined, i.e.,
train AirNet on a specified degradation one-by-one (OBO)
and train AirNet on all degradations in an all-in-one fash-
ion (AIO). In other words, AirNet under AIO is the model
trained on the collection of all the datasets that consists of
three corruptions (i.e., noise, rain, and haze) with different
degradation levels (i.e., 0 = 15,25, 50).

Evaluation metrics: Following [7, 11, 40], two popu-
lar metrics are used for quantitative comparisons, i.e., Peak
Signal-to-Noise Ratio (PSNR) [1 6] and Structure Similarity
(SSIM) [45]. Higher value of these metrics indicates better
performance of the methods.

Training details: We conduct experiments in PyTorch
on NVIDIA GeForce RTX 2080Ti GPUs. To optimize Air-
Net, we employ the ADAM optimizer [ 8] with the default
{Bi}2_,. We set 400 iterations as one epoch and train the
model with 1,500 epochs. To warm up, we first train CBDE
by the optimizing L.; for 100 iterations. Then, we train the
whole network with £ for 1,400 iterations. The learning
rate is initialized to 0.001 and then decreased to 0.0001 af-
ter 60 epochs. After that, the learning rate is decreased to
half after each 125 epochs. In the experiments, we train our

model with the batch size of N and the patch size of 128,
where NV is number of degradation types.

4.2. Comparisons on Single Degradation

In this section, we show the quantitative and qualitative
results on three separated image restoration tasks, i.e., de-
noising, deraining, and dehazing.

Denoising: Table | reports the results on BSD68 and
Urbanl100 comparing with five denoising methods under
the one-by-one setting. From the results, one could find
that AirNet achieves the best result in almost all tests. Be-
sides the dominance in quantitative evaluations, AirNet also
shows superiority in qualitative comparisons as shown in
Figure 3. Due to space limitations, we leave more results in
supplementary materials.

Deraining: From Table 2 and Figure 4, one could ob-
serve that AirNet also remarkably outperforms all derain-
ing baselines. For example, AirNet is 1.4 and 0.0074 higher
than the best method under the OBO setting in PSNR and
SSIM, respectively.

Dehazing As shown in Table 3 and Figure 5, AirNet is
slightly better than the best baseline in PSNR. More specif-
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Comparisons of the SOTA dehaze methods on the SOTS database. Some areas are highlighted in colored rectangles and
zooming-in is recommended for a better visualization and comparisons.

Table 4. Performance comparisons on three challenging datasets. The best results are shown in boldface.

Type Method Denoise Derain Dehaze Average
BSD68 (o = 15) BSD68 (o = 25) BSD68 (o = 50) Rain100L SOTS

BRDNet [40] 34.10/0.9291 31.43/0.8847 28.16/0.7942 33.15/0.9490 | 23.31/0.9116 | 30.30/0.8937

LPNet [11] 32.31/0.9236 27.87/0.8674 25.71/0.7656 33.61/0.9583 | 21.43/0.8631 | 28.19/0.8756

One-By-One FDGAN [7] 31.11/0.9147 29.57/0.8770 27.12/0.7895 31.14/0.9422 | 23.15/0.9207 | 28.42/0.8888
MPRNet [51] 34.01/0.9334 31.34/0.8892 28.10/0.8014 38.26/0.9816 | 28.21/0.9672 | 31.98/0.9146

DL [8] 33.25/0.9225 30.38/0.8679 26.68/0.7415 33.94/0.9456 | 24.68/0.9243 | 29.79/0.8804

AirNet 34.14/0.9356 31.48/0.8928 28.23/0.8057 34.90/0.9660 | 23.18/0.9000 | 30.38/0.9000

BRDNet [40] 32.26/0.8977 29.76/0.8355 26.34/0.6934 27.42/0.8952 | 23.23/0.8952 | 27.80/0.8434

LPNet [11] 26.47/0.7780 24.77/0.7477 21.26/0.5522 24.88/0.7837 | 20.84/0,8277 | 23.64/0.7379

All-In-One FDGAN [7] 30.25/0.9103 28.81/0.8682 26.43/0.7757 29.89/0.9329 | 24.71/0.9294 | 28.02/0.8833
MPRNet [51] 33.54/0.9274 30.89/0.8797 27.56/0.7792 33.57/0.9542 | 25.28/0.9545 | 30.17/0.8990

DL [8] 33.05/0.9140 30.41/0.8606 26.90/0.7401 32.62/0.9314 | 26.92/0.9314 | 29.98/0.8755

AirNet 33.92/0.9329 31.26/0.8884 28.00/0.7974 34.90/0.9675 | 27.94/0.9615 | 31.20/0.9095

ically, AirNet is 0.03 higher than FDGAN in PSNR. How-
ever, the visual results show that AirNet could recover more
details that are human favorable.

4.3. Comparisons on Multiple Degradations

The most attractive point of AirNet is the capacity of
handling different unknown degradations in an all-in-one
framework. In this section, we conduct experiments to ver-
ify the effectiveness of AirNet under such a settings. To this
end, we choose five IRSD methods (i.e., BRDNet [40], LP-
Net [11], FDGAN [7] and MPRNet [51]) and one IRMD
method (i.e., DL [8]) as baselines. For fair and extensive
comparisons, We re-train these methods with the two afore-
mentioned settings, i.e., One-By-One and All-In-One. As
shown in Table 4, one could observe that AirNet is superior
to all the baselines in most cases. It should be pointed out
that although DL could also handle multiple degradations,
it needs to know the corruption types and levels so that the

correct head and tail of the network could be specified.

4.4. Results on Combined Degradations

In this section, we train AirNet with different combina-
tions of multiple degradations to analyze how the perfor-
mance influenced by the corrupted dataset. As shown in
Table 5, more degradations will lead to more difficulties in
denoising, whereas the same conclusion cannot be derived
from the deraining and dehazing tasks. Interesting, the de-
raining will be helpful to denoising, and the dehazing is
benefited from the combination of all degradations. More
empirical studies and theoretical analysis are expected in
the future.

4.5. Results on Spatially Variant Degradation

In this section, we carry out experiment to demonstrate
the effectiveness of AirNet on spatially variant degradation,
i.e., different areas of the same image are with different cor-



Table 5. Ablation study on the combinations of degradations. In the table, “v/” denotes the AirNet with the degradation, “—” indicates
unavailable results, and the best results are shown in boldface.

Degradation Denoise Derain Dehaze
Noise Rain Haze BSD68 (o =15) BSD68 (0 =25) BSD68 (0 = 50) Rain100L SOTS
v 34.14/0.9355 31.49/0.8928 28.23/0.8058 - -
v - - - 34.90/0.9657 -
v - - - - 23.18/0.9000
v v 34.11/0.9352 31.46/0.8923 28.19/0.8042 38.31/0.9824 -
v v 33.97/0.9337 31.32/0.8891 28.06/0.7992 - 23.72/0.9375
v v - - - 32.50/0.9465 | 26.78/0.9577
v v v 33.92/0.9330 31.26/0.8881 28.01/0.7976 34.90/0.9675 | 27.94/0.9615

Table 6. Quantitative results on the spatially variant degradation. The best results are shown in boldface.

Method ‘ CBM3D [5] DnCNN [53] IRCNN [54] FFDNet[55] BRDNet[40] DL[8]  Ours
PSNR 25.09 23.83 22.78 22.71 27.26 26.10 31.42
SSIM 0.6457 0.5037 0.3883 0.3790 0.7410 0.7528  0.8922

Table 7. Ablation study on BSD68 and Urban100. The best results are shown in boldface.
Dataset | BSD68 Urban100
Noise Level | o =15 o=25 c=50 | o=15 o=25 o =150
w.o. SFT 34.12/0.9354  31.47/0.8924  28.22/0.8051 | 34.37/0.9484  32.07/0.9234  28.84/0.8691
w.o. DCN | 34.03/0.9342 31.36/0.8898  28.08/0.7985 | 34.21/0.9467 31.83/0.9197  28.49/0.8597
Ours 34.14/0.9355  31.49/0.8928  28.23/0.8058 | 34.40/0.9487 32.10/0.9241 28.88/0.8699

ruption levels. To this end, we synthesize a degraded ver-
sion of BSD68 which is with spatially variant noises. In de-
tail, we divide each clean image into four regions wherein
the gaussian noises with o € {0, 15,25,50} are respec-
tively added. Table 6 shows that AirNet is also effective in
recovering the latent clean image under such an evaluation
protocol.

4.6. Ablation Study

To demonstrate the effectiveness of our network struc-
ture, we conduct an ablation study on the BSD68 by remov-
ing one of the DCN layer and the SFT layer. From Table 7,
one could see that both the DCN layer and SFT layer are
important to improve the performance of AirNet.

5. Conclusion

In this paper, we proposed an all-in-one image restora-
tion network (AirNet) which is free from the prior of cor-
ruption type and level. Meanwhile, the method is an all-
in-one solution to restore images from different corrup-
tions, which is competitive to a variety of practical scenar-
ios wherein the prior is hard to foreknow or the degradation
might change with time and space. Extensive experimental
results show that the superiority of AirNet in both qualita-

tive and quantitative comparisons.

6. Shortcomings and Broader Impact

Although AirNet experimentally shows superiority in
three image restoration tasks and their combinations, it is
unclear how its performance with other corruptions such as
blurring and snowing. In addition, it is also worthy to fur-
ther explore why different combined degradations lead to
different results w.r.t. the single task as illustrated in Sec-
tion 4.5. In a broader vision, although AirNet could be
adaptive to different corruptions and avoid multiple mod-
els of the same algorithm on different degradations, it still
needs a large amount of resources to optimize the method,
thus resulting in carbon emission and indirectly climate
warming.
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