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Abstract—Recent video anomaly detection methods focus on
reconstructing or predicting frames. Under this umbrella, the
long-standing inter-class data-imbalance problem resorts to the
imbalance between foreground and stationary background ob-
jects in video anomaly detection and this has been less investi-
gated by existing solutions. Naively optimizing the reconstructing
loss yields a biased optimization towards background reconstruc-
tion rather than the objects of interest in the foreground. To solve
this, we proposed a simple yet effective solution, termed attention-
driven loss to alleviate the foreground-background imbalance
problem in anomaly detection. Specifically, we compute a single
mask map that summarizes the frame evolution of moving
foreground regions and suppresses the background in the training
video clips. After that, we construct an attention map through the
combination of the mask map and background to give different
weights to the foreground and background region respectively.
The proposed attention-driven loss is independent of backbone
networks and can be easily augmented in most existing anomaly
detection models. Augmented with attention-driven loss, the
model is able to achieve AUC 86.0% on Avenue, 83.9% on
Pedl, 96% on Ped2 datasets. Extensive experimental results and
ablation studies further validate the effectiveness of our model.

Index Terms—anomaly detection, deep learning, attention.

I. INTRODUCTION

Proliferation of cameras, availability of cheap storage, and
rapid developments in computer hardware has spurred the rise
in automatic analysis of videos in which anomaly detection
plays an inevitable role. Despite several decades of research,
video anomaly detection remains challenging as the candidate
pool of anomalies is often unbounded. Specifically, it is more
difficult to define all possible negative (anomaly) samples,
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which is different from conventional classification or detection
tasks [17]. Apart from this, it is label-intensive to collect
sufficient anomalies due to its rarity. Due to these issues, most
popular methods for video anomaly detection simplify the data
collection procedure, and only use the videos of normal events
as training data to learn a model. In the test set, they target at
discovering the abnormal event which would do not conform
the learned model [34], [21], [18].

The efforts to address the anomaly detection could be
divided into two groups. The first one is to detect the testing
sample with a reconstruction model and identify anomalies
with higher reconstruction errors [5], [7], [12]. For example,
sparse coding based methods [7], [21], [19], [44], [27] first
learn a dictionary from a training data set that only consists
of normal events and then discover the abnormal events that
cannot be exactly reconstructed by a few of atoms of the
learned dictionary. To enjoy the representative capacity of neu-
ral networks, some recent works tried to marry deep learning
and anomaly detection such as Recurrent Neural Networks
(RNNs) [5], 3D-CNNs [12], [29], fully convolutional neural
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networks (FCNs) [30], and generative adversarial networks
(GANs) [32], [!], [3!]. Different from the first group, the
second group is to estimate the prediction errors of next frame
through a prediction model over the training data rather than
reconstructing the current frame. Some recent works employ
Convolutional Long Short-Term Memory (Conv-LSTM) net-
works [25] or U-Net [18]. These methods are able to predict
the evolution of a video sequence from a small number of
input frames and show a certain level of improvement over
previous reconstruction models.

Most existing solutions employ the vanilla loss function
(e.g. Iy and l5) to estimate either the reconstruction error or the
prediction error. Under this umbrella, a natural assumption is
that all regions in the scene, including the stationary back-
ground and moving foreground objects, contribute equally.
Unfortunately, such an assumption may be sub-optimal since
the stationary background is less important than the foreground
that contains object of interests or moving objects. As shown in
Figure 1(a), one could empirically find that the main elements
in anomaly detection are moving person/objects rather than
stationary backgrounds.

More importantly, the stationary background also prevents
effective training optimization. To better understanding this,
we plot the training loss of the latest anomaly detection
method [18] on each frame of Ped2 [22]. As shown in
Figure 1(c), the background takes up a large portion of the
overall training loss while the foreground region of interest
occupies a small part of the overall training loss. Given such
an imbalanced dataset, the loss functions treats all regions
equally, which will be dominated by the background with a
large training loss. As a result, the model will be “lose the
focus” and is less prioritised to reconstruct or predict the pixels
of person/objects during optimization. Such a foreground-
background imbalance problem, unfortunately, has been less
touched in existing works, to the best of our knowledge. To
alleviate such a learning bias, we propose an attention-driven
loss to regularize the network training. The proposed loss
essentially alleviates the data bias issue and guides the network
to focus more on the regions of interest (ROI) in the scene.
Rather than manually providing the ROIs for constructing
attention map, we compute it directly from the training data.
Extensive experimental results on the benchmark datasets
show that, with the proposed loss, the performance of anomaly
detection is significantly improved and reaching state-of-the-
arts. Our contributions are summarized as follows:

1) The experiment results show the limitation of equally
treating foreground and background objects when we re-
construct the frames which is largely ignored in existing
studies. To the best of our knowledge, it could be the first
work to formally investigate this foreground-background
imbalance problem in deep learning for video anomaly
detection.

To better supervise the network training for anomaly
detection, we propose a data-dependent attention-driven
loss, which essentially helps the model focus more
on sparse foreground objects of interest rather than
stationary background in the optimization.

3) We first explain the working mechanism of the proposed

2)

loss from the mathematics perspective. Furthermore, a
series of experiments are conducted to further demon-
strate the superiority of the proposed attention-driven
loss over different baselines.

The attention-driven loss also serves a complementary
piece to existing anomaly detection models. It is easy
to be implemented and incorporated into existing or
future more advanced architectures to improve their
performance.

4)

II. RELATED WORK

Due to the space limitation, we cannot to give an exhaus-
tive review on all anomaly detection developments. Instead,
we will briefly introduce the most related threads of works
including anomaly detection in videos, learning with attention,
and imbalanced data learning.

A. Anomaly Detection in Videos

For anomaly detection, early hand-crafted feature based
works usually utilize low-level trajectory features to represent
the regular motion patterns [35], [39], [42], [41]. To capture the
motion and appearance, hand-crafted spatial-temporal features,
such as histogram of oriented flows (HOF) [9] and histogram
of oriented gradients (HOG) [8] are widely used. Based on
these spatial-temporal features, some researches take one step
further to model the motion and content pattern. Some typical
works include Markov random filed (MRF) [43], mixture
of probabilistic PCA (MPPCA) [16], and Gaussian mixture
model [22]. Recently, deep learning have earned a great
success in anomaly detection [12], [5], [21], [45]. To learn a
better representation for scenes, various convolutional neural
networks (CNN) based methods have been proposed, e.g., 3D
convolutional (3D-CNNs) [12], [29], fully convolutional neu-
ral networks (FCNs), [30] and generative adversarial networks
(GANSs) [32], [11, [18]. With the CNN features, [5], [20], [25]
proposed using long short term memory (LSTM) network and
[21] proposed using Recurrent Neural Networks (RNN) to
capture long-term dependency among frames.

By taking the advantages of both convolutional neural
networks (CNN) and long short term memory (LSTM), [5]
proposed a convolutional LSTM Auto-Encoder (ConvLSTM-
AE) to simultaneously capture normal appearance and mo-
tion patterns. Considering the temporally coherent anomaly
probability, a sparse coding based method within a stacked
RNN framework is introduced to model the normal patterns
in [21]. Different from reconstructing the frame, Liu et al. [18]
utilize a predictive model which employs the prediction error
as a proxy to identify the anomaly probability. Due to the
extreme difficulty of the task, it is hard for a single auto-
encoder to simultaneously handle all different patterns in
videos. Moreover, none of the mentioned approaches exploit
spatial and temporal information separately. To overcome the
aforementioned limitation, multiple auto-encoders for learning
feature representations of both content and motion patterns are
designed [40]. Nevertheless, the auto-encoders are only used
to extract the independent features rather than the end-to-end
trainable module.
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B. Learning with Attention

Attention model enables the neural network dynamically
shift/select attributes so that the overall decision making is
more reliable, which was first used in neural machine transla-
tion [2] and other natural language processing tasks [26], [37],
[46]. Recently, attention based approaches also saw heavy
usage in a variety of vision tasks such as segmentation [4],
image classification [38], and so on.

Different from existing works that use attention model as
a trainable module in the intermediate feature layers, our
proposed attention-driven loss plays an regularization role to
supervise the model training. On the other side, it is also
different from saliency detection [6] in which the ground-
truth saliency map needs to be pre-defined. In our method, the
attention-driven map could be automatically computed from
raw data without additional manual inputs.

C. Learning with Imbalanced Data

Data Imbalance issue ubiquitously exists in various machine
learning tasks such as image annotation [23], object detection
[17], semantic segmentation [15], sequence labeling [47] and
so on. Most existing learning algorithms produce an inductive
learning bias towards the frequent (i.e., majority) classes if
training data are imbalanced, thus resulting in poor minority
class recognition performance. This long standing data im-
balance issue in these tasks usually refers to inter-class data-
imbalance problem. A simple approach to alleviating class
imbalance in learning is to re-sample the training data by of-
fline data augmentation [13] or balanced sampling [13]. More
recently, cost-sensitive learning [14] attracts more and more
attention thanks to its effectiveness. For example, the focal loss
[17] is designed to address the one-stage object detection issue
of which there is an extreme imbalance distribution between
the different object classes.

Although workable in certain scenarios, it is not straight-
forward to apply those concepts to video anomaly detection
due to its unsupervised nature, i.e., we have no supervised
information on abnormal events during training. To the best of
our knowledge, we are also the first to systematically study the
foreground-background imbalance problem for deep learning
based video anomaly detection.

III. ATTENTION-DRIVEN LOSS

In this section, we introduce the concept of Attention-Driven
loss for anomaly detection which is a standard RGB attention
output map to summarizes the appearance and dynamics of a
whole video sequence .

A. RGB Attention Map

As discussed in Introduction, the domination of the sta-
tionary background loss forces the training process focus on
the optimization of the stationary background rather than the
object of interest. To alleviate such a overwhelmingness, one
simple solution is manually defining the ROIs and assigning
them with a larger weight than that of background regions.
Through the collaboration of project agreement, one global

security company help to sketch ROIs in existing Pedl, Ped2
[22], and Avenue [19] benchmark datasets after watching the
whole training videos. Specifically, we define the constructed
attention map A € RIXW*3 for the input RGB frames
{I}1, € REXWX3 a5 follows,

A=M+B, )

where M € {0, 1}1*W>3 i5 a binary mask matrix defined by
security experts and B € RE*W >3 denotes the background
weight. In the experiment, we set B to be a constant matrix
with all the elements of 0.1. The attention map A for anomaly
detection benchmarks are depicted in Figure 3, where the
white region denotes the ROI and the grey region denotes
the background region. The annotation map constructed by
human expert indicates that those white regions are usually
the regions of the moving object, and thus should attract more
attentions when monitoring the scenes.

Unfortunately, this kind of manually annotated binary mask
may be sub-optimal since all the RGB channels share the
same weight and the boundary for ROI is hard to define. To
solve this problem, we propose inferring the RGB attention
map in a data-driven way. More specifically, a single attention
map is computed to summarize the video and capture the
evolution of the video frames at the same time, while averaging
away background pixels and background motion patterns and
focusing on the acting objects such as humans along frames.

Motivated by dynamic image [3], we propose learning the

mask map M along a set of frames I',I2,-.. I7, through
the following simple but effective objective,
. 2
t1>ts 2)
A
Vil
e

where S(¢|M) = (M, V?) . denotes the ranking score associ-
ated with the time-step ¢ and (-) . denotes the Frobenius inner
product. V! =1 S>! | T denotes the average frame within ¢
time-steps. Equation 2 tries to compress the sequence of all
ordered frames I* into a single static image M. The objective
loss is then averaged over all the frames with satisfying
t1 > to, namely in total ﬁ frames.

B. Augmenting With Attention-Driven Loss

In the above objective, the first term is used to constrain the
ranking loss with a unit margin for any {t1,%2}, i.e., V{t1, 2},
if t; > to, then S(¢1|M) > S(¢2|M) + 1. In other words, the
inner product between the learned M and V! should become
larger along timestamps. In this way, the spatial-temporal
dynamic evolution information could be captured because the
optimal attention vector M* reflects the appearance order of
frames. It is interesting to note that the objective in Equation 2
is irrelevant to the stationary background. Specifically, we
decompose the t-th frame by I' = T} + I, where I} and T
denote the background and foreground, respectively. With the
decomposition, V¢ = V| + Vi = 15" (I! +1}). Since
the background is always stationary considering our video

surveillance setting, then V! = Zizl ; is a constant. By
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(a) Pedl-Frame (b) Ped2-Frame (c) Avenue-Frame

Fig. 2. Example RGB Frames of Benchmarks

(a) Pedl (b) Ped2 (c) Avenue

Fig. 3. RGB Attention Map by Security Expert: the white region denotes the region of interest and the black region denotes the background regions.

(a) Pedl (b) Ped2 (c) Avenue

Fig. 4. Our RGB Attention Map.

substituting this into S(¢|M) and cancel out the constant V7, ﬁ >ty 51, max (0,1 — S(t1[M) + S(t2|M)) and
we could obtain
VF(0) o< > vmax{0,1— S(t/m) + S(t2/m))}|m=o

t1>1
0,1 —S(t1|M) + S(t2|M ) R
max( (1| t) (2| )) . 3) _ Z <m,Vt _Vt> 5)
:maX(O,l—<M,Vf >F+<M,Vf >F), N
= > Vh-v&
t1>1o

which suggests that the optimal solution in Equation 2 is

) ) Then M could be rewritten as follows,
irrelevant to the stationary background. In other words, the

learned mask map could suppress the effects of the stationary M* x Z AVAZI VaZ
background as validated in Figure 4. t1>ta
To efficiently solve Equation 2, we adopt a gradient-based 1 &, 1 &
optimization. Starting with M = 0, the first approximated = Z th ZIZ T4 ZI] 6)
solution obtained by the gradient descent is ti>ts i J
T
= Z a1
M* =0 — nVF(M)|m=0 < VF(M)|m=0 “4) =1

where the coefficient «(t) is given by «a(t) = 2(T —t+1) —
(T41)(Hy—H;_1),and H; = Y_'_, 1/t is the t-th Harmonic
for any n > 0, where F(M) = 2[M|? + number. Although the mask map M is able to memorize the
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Fig. 5. Augmenting Anomaly Detection Models With Attention-Driven Loss.

temporal spatial information, we normalize it into [0, 1] for
weighting and avoiding the possible scale problem via

A = M|/(max(M) — min(M)) + B, (7

where max(M) and min(M) denote the largest and smallest
value of M. The operator | - | denotes the operation of taking
the absolute value in element-wise. B is the background
region weight which cannot be zero because the background
still contains some important stationary information in some
scenarios. For example, some persons leave unattended bags
or items on the public areas. We show the resulting A in
Figure 4. The pixels in the attention map appear to focus on
the identity and motion of the salient pedestrians in videos,
indicating that they may contain the information necessary to
perform anomaly detection in video sequences.

The network commonly used for reconstruction model and
prediction model in existing work [I8], [12] usually con-
tains two modules: 1) an encoder which extracts features by
gradually reducing the spatial resolution; and 2) a decoder
which gradually recovers the frame by increasing the spatial
resolution. In this paper, we use the prediction model as a
showcase to demonstrate the effect of the attention-driven loss.
Following the suggestion given by [18], we employed U-Net
[28] as the encoder and decoder to avoid gradient vanishing
problem and information imbalance in each layer. An overview
architecture is illustrated in Figure 5.

1) Attention-Driven Content Loss: The content loss is used
to guarantee the predicted frame being close to its ground-
truth in RGB space. Here, we augment the content loss with
the attention map A, termed as Attention-Driven Content Loss
(ACL) to minimize the distance between a predicted frame and
its ground-truth in intensity. In mathematical,

éacl = Z ”A © (it - It)”%v (®)
t

where It = G(I', .-+, I"1) and I' denote the predicted frame
and its ground truth on the time stamp ¢, respectively. o denotes
the element-wise multiplication.

2) Attention-Driven Gradient Difference Loss: Although
the content loss captures the major content in images, blurry
predictions are always achieved [24]. To sharpen the image
prediction, we directly penalize the differences of image

Decoder Prediction

Encoder \ 3 :
% %

Attention-
Driven
Loss

Ground  Attention

ruth "

Aoy =Tl 117

gradient predictions in the generative loss function with the
attention map, termed as attention-driven gradient difference
loss (AGDL), namely,

RS I) S| - SX( RS RN P S| O
t i,
+ HA ° (|ifg - ig,jfl‘ — I, - Ig,j71|)H1 , (10)

where ¢ and j denote the spatial index of a video frame, and
| - | computes the absolute value.

IV. ADVERSARIAL LEARNING

Adpversarial learning [11] has demonstrated success in im-
proving the generation of image and video. Specifically, a dis-
criminative network D is used to estimate the probability that
a sample comes from the dataset rather than being produced
by a generative model G. The two models are simultaneously
trained so that G could generate frames that are hard to classify
by D, and meanwhile D learns to discriminate the frames
generated by G from the ground-truth. In theory, when G
is well trained, it would be impossible for D to perform
better than chance. As the problem has been cast as frame
prediction task, the system trained with objectives formulated
in previous section directly may not be the optimal choice.
In this work, we construct G using the U-Net and utilize a
patch discriminator. In the discriminator, each output scalar
of D corresponds to a patch of an input image. The training
schedule is detailed in this following subsection.

A. Training of the Generator G

With the fixed weights of D, the goal of training G is to
generate frames where D classify them into class 1. With this
goal, the following adversarial loss is computed as below:

— ZZ(D(it)M —1)2, (11)

where ¢ and j denote the spatial index of a video frame.
With the above, we could obtain the overall loss function
for generator g as follows,

gg

adv

Kg = )\aclgacl + A(Lgcllgagdl + )\ofgof + )\advggdva (12)
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where £, represents the optical flow loss which could evaluate
the coherence of motion and serve as an complementary piece
to the RGB based loss. Note that, previous studies [21],
[18] have shown its superiority in performance improvement.
Here we implement /. through Flownet [10] with all the
fixed parameters. The tradeoff parameters are used to balance
different loss terms. We follow the suggestion of the parameter
setting in [18], and experimentally found that A, = 1,
Aagdl = 1, Aoy = 2, and Ayq, = 0.05 usually lead to a good
performance across datasets.

B. Training of the Discriminator D

With the fixed G, the discrimiAnator D aims to classify It into
class 1 (genuine sample) and It = G(I',--- ,I'"1) into class
0 (fake sample), respectively. The loss function for training D
is as follows,

to= Y030 D)~ 0 + (D)~ 1), (13)

V. EXPERIMENTS

In this section, we evaluate our proposed method on three
anomaly detection benchmarks, including the CUHK Avenue
dataset [19], the UCSD Pedestrian 1 and the UCSD Pedestrian
2 [22]. To train the network, we follow the setting used in [18].
Specifically, the intensity of pixels in all frames are normalized
into [-1, 1] and the size of each frame is rescaled to 256 x 256.
We used a random clip of five sequential frames as the input
and set the mini-batch size as four. The best coefficient in
Equation 12 is chosen for different datasets. All the elements
in the background weight matrix B are set to 0.1.

A. Datasets

In this section, we briefly introduce the datasets used in our
experiments and illustrate some image samples in Fig. 2.

o« CUHK Avenue dataset contains 16 training videos and
21 testing videos with a total of 47 abnormal events,
including throwing objects, loitering, and running. The
size of people may change with the positions and angles
of camera.

« The UCSD dataset contains two parts: The UCSD Pedes-
trian 1 (Pedl) dataset and the UCSD Pedestrian 2 (Ped2)
dataset. The Pedl dataset includes 34 training videos
and 36 testing videos (40 irregular events). All of these
abnormal cases are about vehicles such as bicycles and
cars. The Ped2 dataset contains 16 training videos and 12
testing videos with 12 abnormal events. The definition of
anomaly for Ped?2 is the same with Ped1. Usually different
methods are evaluated on these two parts separately.

B. Testing Metric

In testing phase, we use the prediction error to measure
the difference between frame I*~! and frame I' for anomaly
prediction. A lot of studies have shown that Peak Signal to
Noise Ratio (PSNR) [24] could be better to estimate the

reconstruction quality [18] for each frame than Euclidean
distance. The metric is defined as follows:

PSNR, = 10log, he, (14)

where
[maxft]2A
~ (40, 5) = 185, 5))?

.3

hy

; 15)

where i and j represent the spatial index of I* and I,
respectively. [max ft] is the maximum value of | t and N is the
number of pixels. Lower PSNR; for the ¢-th frame indicates
that it is more likely to be anomaly. Following [24], [18], the
scores of all frames are normalized into [0, 1] after getting the
PSNR score of each frame in each testing video via:
PSNRt - mint PSNRt

maxy PSNRt - mint PSNRt '

where ming PSNR; and max; PSNR; represent the mini-
mum and the maximum PSNR values in a sequence, respec-
tively. Therefore, for a given threshold, we can distinguish

whether a frame is normal or abnormal according to its score
St.

Sy = (16)

C. Evaluation Metric

Based on Equation 16, we can estimate the score of the ¢-th
frame and judge whether the abnormal event occurs. Given a
fixed threshold, the frame can be recognized as an anomaly
frame if its score is lower than the threshold. Obviously, higher
threshold will lead to higher false negative ratio and lower
one may produce more false alarms. Thus, the Area Under
Curve (AUC) is a more suitable metric [22], [19], [21], which
measures the performance by changing different thresholds.

D. Comparison with Existing Methods
In this section, we compare our method MESDnet with

different state-of-the-art methods including: Conv-AE [12],
ConvLSTM-AE [20], DeepAppearance [33], Unmasking [36],
TSC [21], Stacked RNN [21] and Liu et al.. [18]. We listed

the AUC performance of different methods on these datasets
in Table I. For fair comparison, we also report our results
with tuned hyper-parameters in this table. It could be seen that
performance of our proposed model consistently outperforms
other methods.

E. Ablation Studies on Attention-Driven Loss

In this section, we evaluate the effect of attention-driven
loss in both qualitative and qualitative ways.

1) Evaluation of Different Attention-Driven Losses: In the
first experiment, we conduct the ablation studies on two
proposed attention-driven losses, i.e., £qo and £,4q;. For ease
of presentation, we denote their counterpart losses without
augmenting attention map as ¢, and {yq;. The results are
summarized in Table II. Note that in this experiment, we
discard the optical flow loss and adversarial loss and only
focus on the contribution of attention-driven loss. From the
results, one could observe that both two attention-driven loss
could enhance the anomaly detection performance over their
counterparts.
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TABLE I
AUC COMPARISON WITH THE STAT-OF-THE-ART METHODS ON THE AVENUE, PED1, PED2. THE BEST RESULT IS MARKED IN BOLD.
CUHK Avenue | UCSD Pedl | USCD Ped2
MPPCA [16] N/A 59.0% 69.3%
MPPCA+SFA [22] N/A 66.8% 61.3%
MDT [22 N/A 81.8% 82.9%
3DConv-AE [12] 80.0% 75.0% 85.0%
ConvLSTM-AE [20] 77.0% 75.5% 88.1%
150FPS[19] 80.9% N/A N/A
DeepAppearance [33] 84.6% N/A N/A
Unmasking [36] 80.6% 68.4% 82.2%
TSC [21] 80.6% N/A 91.0%
Stacked RNN [21] 81.7% N/A 92.2%
AnoPred [18] 85.1% 83.1% 95.4%
Ours 86.0% 83.9% 96.0%
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Fig. 6. The scores gap between the normal frames and abnormal frames
are enlarged by the attention-driven loss. Green shadow regions denote the
abnormal frames.

2) Score Gap Analysis: Larger score gap usually means
the model is with better performance to distinguish normal
and abnormal patterns, while enjoying stronger robustness to
noises. To investigate the score gap, we plot the irregularity
score S; for each frame I of Ped2 as a showcase in Figure
6(a). From the figure, it is interesting to observe that the
scores of model with the attention-driven loss are always lower
than that without the attention-driven loss for those normal
frames. For the abnormal frames, the score is larger than
that without the attention-driven loss. To better illustrate this,
we also demonstrate the score difference between the base
model with and without the attention-driven loss in Figure
6(b). The results indicate that the score gap between normal
and abnormal events are enlarged by the attention-driven loss.
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Fig. 7. PSNR¢ for Foreground and Background: Comparison Between w. and
w/o. Attention-Driven Loss. Both the PSNR of background and foreground
for inference are significantly dropped after applying the attention-driven loss.

TABLE II
EVALUATION OF DIFFERENT ATTENTION-DRIVEN LOSSES
Avenue Pedl Ped2
Lo 82.0% 74.6% | 83.3%
Lact 83.5% 77.1% | 86.2%
Lact +Lgal 84.0% 77.6% | 87.5%
Lact +Lagdl 84.7% 79.2% | 89.0%

From Figure 6(b), we also observe that the attention map
helps the algorithm to improve the performance up to 15%
in terms of normalized score range, which can be considered
as a significant enhancement. On the other side, it implies a
big difference in the practical use. For example, if we define
the score threshold as 0.6, the 2nd, 8th, and 10th frame will be
flagged as abnormal event by the system without the attention
map. In contrast, training with the attention map will eliminate
such false alarms effectively.

3) Analysis of Predicted Image Quality: As stated in Intro-
duction, the state-of-the-art models without attention-driven
loss is overwhelmed by the stationary background loss. In
this experiment, we examine the prediction error of model
trained with the attention-driven loss. We plot the PSNRs of
the foreground and background of a segment of video clip in
Ped?2 in Figure 7.

From the figure, one could observe that both the PSNR
of background and foreground for inference are significantly
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Fig. 9. Training augmented with attention-driven loss helps algorithm focus
more on optimizing the foreground loss rather than the background loss.

dropped after applying the attention-driven loss. This may
attribute to the adaptive selection merit of attention map.

We further give the visualization comparison in Figure
8. From the Figure 8(c), we observe that model with the
attention-driven loss is able to suppress the error from back-
ground objects and focus on the prediction error from the
moving objects in the foreground. In contrast, the model
without the attention-driven loss (Figure 8(b)) is diverted to the
background thus leading to large uninformative background
reconstruction errors.

4) Impact on Training: In order to illustrate how the atten-
tion map assists in optimization, we also plot both background
and foreground Mean Square Errors (MSE) for algorithm

learning with/without attention-driven loss on each frame in
Figure 9. From Figure 9(a), we observe that the algorithm
without attention-driven loss focus on the minimization of
background which leads a lower background MSE compared
to the optimization with the proposed loss at the beginning. In
Figure 9(b), one can see that attention-driven loss is able to
significantly shift the optimization focus from the background
to the foreground objects and a lower foreground MSE is
achieved. These observations explains why the model could
benefits from the proposed attention-driven loss.

5) Comparison of Attention Maps: Human vs Learned: In
this experiment, we evaluate the proposed two attention maps
on the state-of-the-art prediction model [18]: 1) the attention
map defined by human (see Equation 1); and 2) the attention
map computed from data (see Equation 7). The results are
summarized in Table III. From the results, one could observe
that the attention constructed by human is able to improve the
performance in the Avenue and Pedl dataset. However, it fails
in Ped 2, which suggests that the learned attention map is a
better choice.

TABLE III
COMPARISON OF ATTENTION MAPS: HUMAN VS OURS
Avenue Pedl Ped2
Base 85.0% 83.1% | 95.2%
+Human Attention 85.3% 83.6% | 94.7%
+Our Attention 86.0% 83.9% | 96.0%

6) The Versatility: In previous experiments, one could
observe that the proposed attention-driven loss works well with
the prediction model [!8]. In order to further demonstrate the
versatility of the proposed loss, we apply it to different net-
work structures including 3DConv-AE [12] and ConvLSTM-
AE [20]. Both two models are state-of-the-art reconstruction
based paradigms. The results are summarized in Table IV
which shows that the attention-driven loss is able to give a
remarkable improvement over different architectures.

7) The Parameter Analysis: In the proposed attention loss
(i.e., Equation 7), B is the background region weight which
cannot be zero because the background still contains some
important stationary information in some scenarios. For exam-
ple, some persons leave unattended bags or items on the public
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TABLE IV
GENERATLIZATION TO OTHER MODELS
Avenue Pedl Ped2
3DConv-AE [12] 80.0% 75.0% 85.0%
+ Attention-Driven Loss 82.5% 771% | 87.2%
ConvLSTM-AE [20] 77.0% 75.5% 88.1%
+ Attention-Driven Loss | 78.6% 76.8% | 90.3%

areas. Meanwhile, setting background weight to be zero results
in the failure of the frame reconstruction. On the other hand,
in principle, we want to suppress the background contribution
into a small scale. In experiments, we also find that fixing
B;; = 0.1 achieves good results across different datasets. We
also conduct the parameter analysis of this parameter on Ped2

as the showcase in Table V.
TABLE V

PARAMETER ANALYSIS OF B

By 0
AUC | 92.0%

0.1
96.0%

0.2
95.2%

0.3
94.0%

0.4
93.5%

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated the problem of background re-
construction loss dominating the training loss for anomaly de-
tection in videos. To solve this imbalance distribution problem,
a simple but effective solution, called attention-driven loss,
was introduced to learn generalizable features. Specifically,
the human designed and learned from data attention maps
were proposed. With them, we proposed two attention-driven
losses for anomaly detection, i.e., attention-driven content
loss and attention-driven gradient loss. The proposed method
is independent from backbone networks and can be easily
integrated into most existing models. Extensive experimental
results and ablation studies also validate the effectiveness of
our proposed model. In future, we would like to investigate
how to extend the proposed attention-driven loss into a broader
scenario of anomaly detection tasks including unsupervised
anomaly detection and supervised anomaly detection.
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